题目内容
四边形ABCD中,点E是AB的中点,F是AD边上的动点.连结DE、CF.
(1)若四边形ABCD是矩形,AD=12,CD=10,如图(1)所示.
①请直接写出AE的长度;
②当DE⊥CF时,试求出CF长度.
(2)如图(2),若四边形ABCD是平行四边形,DE与CF相交于点P.
探究:当∠B与∠PC满足什么关系时,成立?并证明你的结论.
(1)若四边形ABCD是矩形,AD=12,CD=10,如图(1)所示.
①请直接写出AE的长度;
②当DE⊥CF时,试求出CF长度.
(2)如图(2),若四边形ABCD是平行四边形,DE与CF相交于点P.
探究:当∠B与∠PC满足什么关系时,成立?并证明你的结论.
(1)①AE ="5;" ②CF=;
(2)当∠B+∠EPC=180°时,成立.证明见解析.
(2)当∠B+∠EPC=180°时,成立.证明见解析.
试题分析:(1) ①四边形ABCD是矩形, CD=10,点E是AB的中点,可得:AE=CD=5;
②根据已知证得△AED∽△DFC,;利用相似三角形对应边成比例即可;
(2)当∠B+∠EPC=180°时,成立.根据已知证得:△DFP∽△DEA,△CPD∽△CDF,再根据对应边成比例即可.
试题解析:(1)①∵四边形ABCD是矩形, CD=10,点E是AB的中点,
∴AE=CD=5;
②∵四边形ABCD是矩形,
∴∠A=∠FDC=90°,
∵CF⊥DE,
∴∠ADE+∠CFD=90°,∠ADE+∠AED=90°,
∴∠CFD=∠AED,
∵∠A=∠CDF,
∴△AED∽△DFC
∴
在△AED中,∠A =90°,AD=12,AE =5,
∴
∴
CF=;
(2)当∠B+∠EPC=180°时,成立.
∵四边形ABCD是平行四边形,
∴∠B=∠ADC,AD∥BC,
∴∠B+∠A=180°,
∵∠B+∠EPC=180°,
∴∠A=∠EPC=∠FPD,
∵∠FDP=∠EDA,
∴△DFP∽△DEA,
∴,
∵∠B=∠ADC,∠B+∠EPC=180°,∠EPC+∠DPC=180°,
∴∠CPD=∠CDF,
∵∠PCD=∠DCF,
∴△CPD∽△CDF,
∴,
∴,
∴,
即当∠B+∠EPC=180°时,成立.
练习册系列答案
相关题目