题目内容

如图,AB与CD交于点O,OE⊥AB,OF⊥CD,若∠EOD=2∠BOD,求∠EOF的度数.
解:∵OE⊥AB,
∴∠EOB=
90°
90°

∴∠EOD+
∠BOD
∠BOD
=
90°
90°

又∵∠EOD=2∠BOD,
∴∠BOD=
30°
30°
,∠EOD=
60°
60°

∵OF⊥CD,
∴∠FOD=
90°
90°

∴∠EOF=
90°
90°
-
60°
60°
=
30°
30°
分析:根据OE⊥AB,可得∠EOD+∠BOD=90°,然后根据∠EOD=2∠BOD,求出∠BOD和∠EOD的度数,然后根据OF⊥CD,可求得∠EOF的度数.
解答:解:∵OE⊥AB,
∴∠EOB=90°,
∴∠EOD+∠BOD=90°,
又∵∠EOD=2∠BOD,
∴∠BOD=30°,∠EOD=60°,
∵OF⊥CD,
∴∠FOD=90°,
∴∠EOF=90°-60°=30°.
故答案为:90°,∠BOD,90°,30°,60°,90°,90°,60°,30°.
点评:本题利用垂直的定义,对顶角和互补的性质计算,要注意领会由垂直得直角这一要点.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网