题目内容
【题目】在平面直角坐标系xOy中,对于任意两点P1(x1 , y1)与P2(x2 , y2)的“友好距离”,给出如下定义: 若|x1﹣x2|≥|y1﹣y2|,则点P1(x1 , y1)与点P2(x2 , y2)的“友好距离”为|x1﹣x2|;
若|x1﹣x2|<|y1﹣y2|,则P1(x1 , y1)与点P2(x2 , y2)的“友好距离”为|y1﹣y2|;
(1)已知点A(﹣ ,0),B为y轴上的动点, ①若点A与B的“友好距离为”3,写出满足条件的B点的坐标: .
②直接写出点A与点B的“友好距离”的最小值 .
(2)已知C点坐标为C(m, m+3)(m<0),D(0,1),求点C与D的“友好距离”的最小值及相应的C点坐标.
【答案】
(1);
(2)∵C(m, m+3),D(0,1),
∴|m|=| m+2|,
∵m<0,
当m≤﹣3时,m= m+2,解得m=6,(舍去);
当﹣3<m<0时,﹣m= m+2,解得m=﹣ ,
∴点C与点D的“友好距离”的最小值为:|m|= ,
此时C(﹣ , ).
【解析】解:(1)①∵B为y轴上的一个动点, ∴设点B的坐标为(0,y).
∵|﹣ ﹣0|= ≠3,
∴|0﹣y|=3,
解得,y=3或y=﹣3;
∴点B的坐标是(0,3)或(0,﹣3);
故填写:(0,3)或(0,﹣3).
②根据题意,得:|﹣ ﹣0|≥|0﹣y|,
即|y|≤ ,
∴点A与点B的“友好距离”的最小值为 .
所以答案是: ;
【题目】某学校环保志愿者协会对该市城区的空气质量进行调查,从全年365天中随机抽取了80天的空气质量指数(AQI)数据,绘制出三幅不完整的统计图表.请根据图表中提供的信息解答下列问题:
AQI指数 | 质量等级 | 天数(天) |
0﹣50 | 优 | m |
51﹣100 | 良 | 44 |
101﹣150 | 轻度污染 | n |
151﹣200 | 中度污染 | 4 |
201﹣300 | 重度污染 | 2 |
300以上 | 严重污染 | 2 |
(1 )统计表中m= ,n= .扇形统计图中,空气质量等级为“良”的天数占 %;
(2)补全条形统计图,并通过计算估计该市城区全年空气质量等级为“优”和“良”的天数共多少天?
(3)据调查,严重污染的2天发生在春节期间,燃放烟花爆竹成为空气污染的一个重要原因,据此,请你提出一条合理化建议.