题目内容
【题目】如图,已知点E,F分别是□ABCD的边BC,AD上的中点,且∠BAC=90°.
(1)求证:四边形AECF是菱形;
(2)若∠B=30°,BC=10,求菱形AECF面积.
【答案】(1)见解析(2)
【解析】
试题(1)利用平行四边形的性质和菱形的性质即可判定四边形AECF是菱形;
(2)连接EF交于点O,运用解直角三角形的知识点,可以求得AC与EF的长,再利用菱形的面积公式即可求得菱形AECF的面积.
试题解析:(1)证明:∵四边形ABCD是平行四边形,
∴AD∥BC,AD=BC.
在Rt△ABC中,∠BAC=90°,点E是BC边的中点,
∴AE=CE=BC.
同理,AF=CF=AD.
∴AF=CE.
∴四边形AECF是平行四边形.
∴平行四边形AECF是菱形.
(2)解:在Rt△ABC中,∠BAC=90°,∠B=30°,BC=10,
∴AC=5,AB=.
连接EF交于点O,
∴AC⊥EF于点O,点O是AC中点.
∴OE=.
∴EF=.
∴菱形AECF的面积是AC·EF=.
练习册系列答案
相关题目