题目内容
【题目】射击队为从甲、乙两名运动员中选拔一人参加比赛,对他们进行了六次测试,测试成绩如下表(单位:环):
(1)完成表中填空① ;② ;
(2)请计算甲六次测试成绩的方差;
(3)若乙六次测试成绩方差为,你认为推荐谁参加比赛更合适,请说明理由.
【答案】(1)9;9;(2)S甲2= ;(3)推荐甲参加比赛合适.
【解析】
试题(1)根据中位数的定义先把这组数据从小到大排列,再找出最中间两个数的平均数即可求出①;根据平均数的计算公式即可求出②;
(2)根据方差的计算公式S2= [(x1-)2+(x2-)2+…+(xn-)2]代值计算即可;
(3)根据方差的意义:反映了一组数据的波动大小,方差越大,波动性越大,反之也成立,即可得出答案.
试题解析:(1)甲的中位数是:(9+9)=9;乙的平均数是:(10+7+10+10+9+8)÷6=9;
故答案为:9,9;
(2)S2甲=[(109)2+(89)2+(99)2+(89)2+(109)2+(99)2]= ;
(3)∵ S甲2<S乙2,
∴推荐甲参加比赛合适.
练习册系列答案
相关题目