题目内容
【题目】如图,△ABC和△ADE都是等边三角形,BD与CE相交于O.
(1)求证:BD=CE;
(2)OA平分∠BOE吗?说明理由.
【答案】(1)、证明过程见解析;(2)、证明过程见解析
【解析】
试题分析:(1)、根据等边三角形的性质得到AB=AC,AD=AE,∠BAC=∠DAE=60°,则易得∠BAD=∠CAE,根据“SAS”有△BAD≌△CAE,利用全等三角形的性质即可得到结论;(2)、作AF⊥BD,AG⊥CE,垂足分别是F、G,由△BAD≌△CAE,根据全等三角形的性质有AF=AG,再根据角平分线的判定定理即可得到OA平分∠BOE.
试题解析:(1)、∵△ABC和△ADE都是等边三角形, ∴AB=AC,AD=AE,∠BAC=∠DAE=60°,
∴∠BAC+∠CAD=∠DAE+∠CAD,即∠BAD=∠CAE, 在△BAD和△CAE中, ,
∴△BAD≌△CAE(SAS), ∴BD=CE;
(2)、OA平分∠BOE.理由如下: 作AF⊥BD,AG⊥CE,垂足分别是F、G,如图,
∵AF、AG恰好是两个全等三角形△BAD与△CAE对应边上的高, ∴AF=AG, ∴OA平分∠BOE.
练习册系列答案
相关题目