题目内容
【题目】以直线上一点为端点作射线,使,将一块直角三角板的直角顶点放在处,一边放在射线上,将直角三角板绕点逆时针方向旋转直至边第一次重合在射线上停止.
(1)如图1,边在射线上,则 ;
(2)如图2,若恰好平分,则 ;
(3)如图3,若,则 ;
(4)在旋转过程中,与始终保持的数量关系是 ,并请说明理由.
【答案】(1)30;(2)30;(3)75;(4)∠COE∠BOD=30,理由见解析
【解析】
(1)根据图形得出∠COE=∠DOE∠BOC,代入求出即可;
(2)根据角平分线定义求出∠AOC=2∠EOC=120,代入∠BOD=∠BOE∠DOE即可求解;
(3)根据,先求出∠COD,再利用∠COD+即可求解;
(4)根据各图的特点分别求解即可得到结论.
(1)∠COE=∠DOE∠BOC=9060=30,
故答案为:30;
(2)∵恰好平分,∠BOC=60,
∴∠AOC=2∠EOC=120,∴∠EOC=60,
∴∠BOE=∠EOC+∠BOC=120
∵∠DOE=90,
∴∠BOD=∠BOE∠DOE=30
故答案为:30;
(3)∵
∴∠COD=
∴∠COD+=75
故答案为:75;
(4)∠COE∠BOD=30,理由如下:
如图1,∠COE∠BOD=30-0=30;
如图2,∵∠BOD+∠COD=∠BOC=60,∠COE+∠COD=∠DOE=90,
∴(∠COE+∠COD)(∠BOD+∠COD)
=∠COE+∠COD∠BOD∠COD
=∠COE∠BOD
=9060
=30;
如图3,∵∠BOD-∠COD=∠BOC=60,∠COE-∠COD=∠DOE=90,
∴(∠COE-∠COD)(∠BOD-∠COD)
=∠COE-∠COD∠BOD+∠COD
=∠COE∠BOD
=9060
=30;
即∠COE∠BOD=30.
练习册系列答案
相关题目