题目内容
【题目】阅读材料:小明在学习二次根式后,发现一些含根号的式子可以写成另一个式了的平方,如3+2=(1+)2.善于思考的小明进行了以下探索:
若设a+b=(m+n)2=m2+2n2+2mn(其中a、b、m、n均为整数),
则有a=m2+2n2,b=2mn.
这样小明就找到了一种把类似a+b的式子化为平方式的方法.
请你仿照小明的方法探索并解决下列问题:
(1)若a+b=(m+n)2,当a、b、m、n均为整数时,用含m、n的式子分别表示a、b,得:a= ,b= ;
(2)若a+6=(m+n)2,且a、m、n均为正整数,求a的值;
(3)化简:.
【答案】(1)a=m2+7n2,b=2mn;(2)a的值为为12或28;(3)+1.
【解析】
(1)利用完全平方公式展开可得到用m、n表示出a、b;
(2)利用(1)中结论得到6=2mn,利用a、m、n均为正整数得到m=1,n=3或m=3,n=1,然后利用a=m2+3n2计算对应a的值;
(3)设
=t,两边平方得到t2=4﹣+4++2,然后利用(1)中的结论化简得到t2=6+2,最后把6+2写成完全平方形式可得到t的值.
解:(1)设a+b=(m+n)2=m2+7n2+2mn(其中a、b、m、n均为整数),
则有a=m2+7n2,b=2mn;
故答案为m2+7n2,2mn;
(2)∵6=2mn,
∴mn=3,
∵a、m、n均为正整数,
∴m=1,n=3或m=3,n=1,
当m=1,n=3时,a=m2+3n2=1+3×9=28;
当m=3,n=1时,a=m2+3n2=9+3×1=12;
即a的值为为12或28;
(3)设
=t,
则t2=4﹣+4++2
=8+2
=8+2
=8+2(﹣1)
=6+2
=(+1)2,
∴t=+1.
练习册系列答案
相关题目