题目内容

【题目】如图ABCAB=AC,∠BAC=90°,PBC上的一动点AP=AQ,∠PAQ=90°,连接CQ

(1)求证:CQBC

(2)△ACQ能否是直角三角形若能请直接写出此时点P的位置;若不能请说明理由.

(3)当点PBC上什么位置时,△ACQ是等腰三角形请说明理由

【答案】(1)证明见解析;(2)PBC的中点或与点C重合时ACQ是直角三角形;(3)当点PBC的中点或与点C重合或BP=ABACQ是等腰三角形.

【解析】

(1)根据同角的余角相等求出∠BAP=∠CAQ,然后利用“边角边”证明△ABP和△ACQ全等,根据全等三角形对应角相等可得∠ACQ=∠B,再根据等腰直角三角形的性质得到∠B=∠ACB=45°,然后求出∠BCQ=90°,然后根据垂直的定义证明即可;
(2)分∠APB和∠BAP是直角两种情况求出点P的位置,再根据△ABP和△ACQ全等解答;
(3)分BP=AB,AB=AP,AP=BP三种情况讨论求出点P的位置,再根据△ABP和△ACQ全等解答.

解:(1)∵∠BAP+∠CAP=∠BAC=90°,∠CAQ+∠CAP=∠PAQ=90°,

∴∠BAP=∠CAQ,

△ABP△ACQ

∴△ABP≌△ACQ(SAS),

∴∠ACQ=∠B,

∵AB=AC,∠BAC=90°,

∴∠B=∠ACB=45°,

∴∠BCQ=∠ACB+∠ACQ=45°+45°=90°,

∴CQ⊥BC;

(2)当点PBC的中点或与点C重合时,△ACQ是直角三角形

(3)①BP=AB,△ABP是等腰三角形;

AB=APP与点C重合;

AP=BP,PBC的中点

∵△ABP≌△ACQ,

当点PBC的中点或与点C重合或BP=AB,△ACQ是等腰三角形.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网