题目内容
抛物线的顶点坐标是( )
A. (2,?1) B. (-2,?1) C. (2,?-1) D. (-2,?-1)
下列运算正确的是( )
A. x2•x3=x5 B. x6÷x2=x3 C. ﹣(x2)4=﹣x6 D. x2+x3=x5
如图,四边形ABCD中,AC垂直平分BD,垂足为E,下列结论不一定成立的是
A.AB=AD B.AC平分∠BCD
C.AB=BD D.△BEC≌△DEC
如图,在⊙O中,AB是直径,CD是弦,AB⊥CD.
(1)P是上一点(不与C、D重合),求证:∠CPD=∠COB;
(2)点P′在劣弧CD上(不与C、D重合)时,∠CP′D与∠COB有什么数量关系?请证明你的结论.
已知⊙O的半径为4cm,A为线段OP的中点,当OP=7cm时,点A与⊙O的位置关系是( )
A. 点A在⊙O内 B. 点A在⊙O上 C. 点A在⊙O外 D. 不能确定
一元二次方程的二次项系数和一次项系数分别为( )
A. 3,-1 B. 3,-4
C. 3,4 D. ,
如图,已知直线AB和CD相交于O点,∠COE是直角,OF平分∠AOE,∠COF=34°,求∠BOD的度数.
的系数是________,次数是_______次;
某商场为了吸引顾客,设立了可以自由转动的转盘(如图,转盘被均匀分为20份),并规定:顾客每购买200元的商品,就能获得一次转动转盘的机会.如果转盘停止后,指针正好对准红色、黄色、绿色区域,那么顾客就可以分别获得200元、100元、50元的购物券,凭购物券可以在该商场继续购物.如果顾客不愿意转转盘,那么可以直接获得购物券30元.
(1)求转动一次转盘获得购物券的概率;
(2)转转盘和直接获得购物券,你认为哪种方式对顾客更合算?