题目内容
【题目】如图,在Rt△ABC中,∠C=90°,将△ABC绕点C顺时针旋转90°得到△A′B′C,M、M′分别是AB、A′B′的中点,若AC=8,BC=6,则线段MM′的长为____.
【答案】
【解析】
先利用勾股定理求出AB的长,根据直角三角形斜边上的中线等于斜边的一半的性质求出CM=AB,然后连接CM、CM′,再根据旋转的性质求出∠MCM′=90°,CM=CM′,再利用勾股定理列式求解即可.
连接CM,CM′,
∵AC=8,BC=6,
∴AB= =10,
∵M是AB的中点,
∴CM=AB=5,
∵Rt△ABC绕点C顺时针旋转90°得到Rt△A′B′C,
∴∠A′CM′=∠ACM
∵∠ACM+∠MCB=90°,
∴∠MCB+∠BCM′=90°,
又∵CM=C′M′,
∴△CMM′是等腰直角三角形,
∴MM′=CM=5,
故答案为:5.
练习册系列答案
相关题目