题目内容
【题目】方程x2﹣kx+k﹣2=0有两个实数根x1,x2,且0<x1<1,2<x2<3,求k的取值范围.
【答案】2<k<3.5.
【解析】
由于方程x2-kx+k-2=0有两个实数根x1,x2,且0<x1<1,2<x2<3,根据一元二次方程与二次函数的关系可画出二次函数y=x2-kx+k-2的图象,根据图象得到当x=0,y=k-2>0;当x=1,y=1-k+k-2<0;当x=2,y=4-2k+k-2<0;当x=3,y=9-3k+k-2>0,求出几个不等式解的公共部分即可得到k的取值范围.
∵方程x2-kx+k-2=0有两个实数根x1,x2,且0<x1<1,2<x2<3,
∴二次函数y=x2-kx+k-2如图所示,
∴x=0,y=k-2>0;x=1,y=1-k+k-2<0;x=2,y=4-2k+k-2<0;x=3,y=9-3k+k-2>0,
而△=k2-4(k-2)=(k-2)2+4>0,
∴2<k<3.5,
即k的取值范围为2<k<3.5.
练习册系列答案
相关题目
【题目】已知函数(为常数且)中,当时,;当时,.请对该函数及其图像进行如下探究:
(1)求该函数的解析式,并直接写出该函数自变量的取值范围:
(2)请在下列直角坐标系中画出该函数的图像:
列表如下:
x | … | -4 | -3 | -2 | -1 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | … | ||
y | … | … |
描点连线:
(3)请结合所画函数图象,写出函数图象的两条性质
(4)请你在上方直角坐标系中画出函数的图像,结合上述函数的图像,写出不等式的解集.