ÌâÄ¿ÄÚÈÝ
Èçͼ£¬ÒÑÖªÕý±ÈÀýº¯ÊýºÍ·´±ÈÀýº¯ÊýµÄͼÏ󶼾¹ýµãA£¨3£¬3£©£®£¨1£©ÇóÕý±ÈÀýº¯ÊýºÍ·´±ÈÀýº¯ÊýµÄ½âÎöʽ£»
£¨2£©°ÑÖ±ÏßOAÏòÏÂƽÒƺóÓë·´±ÈÀýº¯ÊýµÄͼÏó½»ÓÚµãB£¨6£¬m£©£¬ÇómµÄÖµºÍÕâ¸öÒ»´Îº¯ÊýµÄ½âÎöʽ£»
£¨3£©µÚ£¨2£©ÎÊÖеÄÒ»´Îº¯ÊýµÄͼÏóÓëxÖá¡¢yÖá·Ö±ð½»ÓÚC¡¢D£¬Çó¹ýA¡¢B¡¢DÈýµãµÄ¶þ´Îº¯ÊýµÄ½âÎöʽ£»
£¨4£©ÔÚµÚ£¨3£©ÎʵÄÌõ¼þÏ£¬¶þ´Îº¯ÊýÔÚµÚÒ»ÏóÏÞµÄͼÏóÉÏÊÇ·ñ´æÔÚµãE£¬Ê¹ËıßÐÎOECDµÄÃæ»ýS1ÓëËıßÐÎOABDµÄÃæ»ýSÂú×㣺S1=
2 | 3 |
·ÖÎö£º£¨1£©Éè³öÕý±ÈÀýº¯ÊýºÍ·´±ÈÀýº¯ÊýµÄ½âÎöʽ£¬Óôý¶¨ÏµÊý·¢½â´ð£»
£¨2£©ÒòΪBµãΪÈý¸öº¯ÊýµÄ½»µã£¬½«B£¨6£¬m£©´úÈëÒÑÖªº¯Êýy=
£¬¼´¿ÉÇóµÃmµÄÖµ£»¸ù¾ÝÒ»´Îº¯ÊýºÍÕý±ÈÀýº¯ÊýƽÐУ¬¿ÉÖª¶þÕß±ÈÀýϵÊýÏàͬ£¬ÔÙÓôý¶¨ÏµÊý·¨Çó³öbµÄÖµ£»
£¨3£©A¡¢B×ø±êÒÑÇó³ö£¬Dµã×ø±ê¿É¸ù¾ÝÒ»´Îº¯Êý½âÎöʽÇóµÃ£»
£¨4£©»³öͼÐΣ¬¸ù¾ÝÒÑÖª¸÷µã×ø±ê£¬Çó³öÏàÓ¦Ï߶㤣®ÓÉÓÚËıßÐβ»¹æÔò£¬¹Ê½«ÆäÃæ»ýת»¯Îª¾ØÐÎÃæ»ýÓëÈý½ÇÐÎÃæ»ýµÄ²î»ò¼¸¸öÈý½ÇÐÎÃæ»ýµÄºÍ£®
£¨2£©ÒòΪBµãΪÈý¸öº¯ÊýµÄ½»µã£¬½«B£¨6£¬m£©´úÈëÒÑÖªº¯Êýy=
9 |
x |
£¨3£©A¡¢B×ø±êÒÑÇó³ö£¬Dµã×ø±ê¿É¸ù¾ÝÒ»´Îº¯Êý½âÎöʽÇóµÃ£»
£¨4£©»³öͼÐΣ¬¸ù¾ÝÒÑÖª¸÷µã×ø±ê£¬Çó³öÏàÓ¦Ï߶㤣®ÓÉÓÚËıßÐβ»¹æÔò£¬¹Ê½«ÆäÃæ»ýת»¯Îª¾ØÐÎÃæ»ýÓëÈý½ÇÐÎÃæ»ýµÄ²î»ò¼¸¸öÈý½ÇÐÎÃæ»ýµÄºÍ£®
½â´ð£º½â£º£¨1£©ÉèÕý±ÈÀýº¯ÊýµÄ½âÎöʽΪy=k1x£¨k1¡Ù0£©£¬
ÒòΪy=k1xµÄͼÏó¹ýµãA£¨3£¬3£©£¬
ËùÒÔ3=3k1£¬½âµÃk1=1£®
Õâ¸öÕý±ÈÀýº¯ÊýµÄ½âÎöʽΪy=x£®
Éè·´±ÈÀýº¯ÊýµÄ½âÎöʽΪy=
£¨k2¡Ù0£©£¬
ÒòΪy=
µÄͼÏó¹ýµãA£¨3£¬3£©£¬
ËùÒÔ3=
£¬
½âµÃk2=9£®
Õâ¸ö·´±ÈÀýº¯ÊýµÄ½âÎöʽΪy=
£®£¨2·Ö£©
£¨2£©ÒòΪµãB£¨6£¬m£©ÔÚy=
µÄͼÏóÉÏ£¬
ËùÒÔm=
=
£¬
ÔòµãB£¨6£¬
£©£®£¨3·Ö£©
ÉèÒ»´Îº¯Êý½âÎöʽΪy=k3x+b£¨k3¡Ù0£©£¬
ÒòΪy=k3x+bµÄͼÏóÊÇÓÉy=xƽÒƵõ½µÄ£¬
ËùÒÔk3=1£¬¼´y=x+b£®
ÓÖÒòΪy=x+bµÄͼÏó¹ýµãB£¨6£¬
£©£¬
ËùÒÔ
=6+b£¬
½âµÃb=-
£¬
¡àÒ»´Îº¯ÊýµÄ½âÎöʽΪy=x-
£®
£¨3£©ÒòΪy=x-
µÄͼÏó½»yÖáÓÚµãD£¬
ËùÒÔDµÄ×ø±êΪ£¨0£¬-
£©£®
Éè¶þ´Îº¯ÊýµÄ½âÎöʽΪy=ax2+bx+c£¨a¡Ù0£©£®
ÒòΪy=ax2+bx+cµÄͼÏó¹ýµãA£¨3£¬3£©¡¢B£¨6£¬
£©¡¢ºÍD£¨0£¬-
£©£¬
ËùÒÔ
£¬
½âµÃ
£¬
Õâ¸ö¶þ´Îº¯ÊýµÄ½âÎöʽΪy=-
x2+4x-
£®£¨6·Ö£©
£¨4£©¡ßy=x-
½»xÖáÓÚµãC£¬
¡àµãCµÄ×ø±êÊÇ£¨
£¬0£©£¬
ÈçͼËùʾ£¬Á¬½ÓOE£¬CE£¬¹ýµãA×÷AF¡ÎxÖᣬ½»yÖáÓÚµãF£¬¹ýµãB×÷BH¡ÎyÖᣬ½»AFÓÚµãH£¬¹ýµãD×÷DG¡ÎxÖᣬ½»Ö±ÏßBHÓÚµãG£¬ÔòS=
¡Á6-
¡Á6¡Á6-
¡Á
¡Á3-
¡Á3¡Á3=45-18-
-
=
£®
¼ÙÉè´æÔÚµãE£¨x0£¬y0£©£¬Ê¹S1=
S=
¡Á
=
£®
¡ßËıßÐÎCDOEµÄ¶¥µãEÖ»ÄÜÔÚxÖáÉÏ·½£¬
¡ày0£¾0£¬
¡àS1=S¡÷OCD+S¡÷OCE=
¡Á
¡Á
+
¡Á
•y0=
+
y0£®
¡à
+
y0=
£¬
¡ày0=
£®£¨7·Ö£©
¡ßE£¨x0£¬y0£©ÔÚ¶þ´Îº¯ÊýµÄͼÏóÉÏ£¬
¡à-
+4x0-
=
£®
½âµÃx0=2»òx0=6£®
µ±x0=6ʱ£¬µãE£¨6£¬
£©ÓëµãBÖغϣ¬ÕâʱCDOE²»ÊÇËıßÐΣ¬¹Êx0=6ÉáÈ¥£¬
¡àµãEµÄ×ø±êΪ£¨2£¬
£©£®£¨8·Ö£©
ÒòΪy=k1xµÄͼÏó¹ýµãA£¨3£¬3£©£¬
ËùÒÔ3=3k1£¬½âµÃk1=1£®
Õâ¸öÕý±ÈÀýº¯ÊýµÄ½âÎöʽΪy=x£®
Éè·´±ÈÀýº¯ÊýµÄ½âÎöʽΪy=
k2 |
x |
ÒòΪy=
k2 |
x |
ËùÒÔ3=
k2 |
3 |
½âµÃk2=9£®
Õâ¸ö·´±ÈÀýº¯ÊýµÄ½âÎöʽΪy=
9 |
x |
£¨2£©ÒòΪµãB£¨6£¬m£©ÔÚy=
9 |
x |
ËùÒÔm=
9 |
6 |
3 |
2 |
ÔòµãB£¨6£¬
3 |
2 |
ÉèÒ»´Îº¯Êý½âÎöʽΪy=k3x+b£¨k3¡Ù0£©£¬
ÒòΪy=k3x+bµÄͼÏóÊÇÓÉy=xƽÒƵõ½µÄ£¬
ËùÒÔk3=1£¬¼´y=x+b£®
ÓÖÒòΪy=x+bµÄͼÏó¹ýµãB£¨6£¬
3 |
2 |
ËùÒÔ
3 |
2 |
½âµÃb=-
9 |
2 |
¡àÒ»´Îº¯ÊýµÄ½âÎöʽΪy=x-
9 |
2 |
£¨3£©ÒòΪy=x-
9 |
2 |
ËùÒÔDµÄ×ø±êΪ£¨0£¬-
9 |
2 |
Éè¶þ´Îº¯ÊýµÄ½âÎöʽΪy=ax2+bx+c£¨a¡Ù0£©£®
ÒòΪy=ax2+bx+cµÄͼÏó¹ýµãA£¨3£¬3£©¡¢B£¨6£¬
3 |
2 |
9 |
2 |
ËùÒÔ
|
½âµÃ
|
Õâ¸ö¶þ´Îº¯ÊýµÄ½âÎöʽΪy=-
1 |
2 |
9 |
2 |
£¨4£©¡ßy=x-
9 |
2 |
¡àµãCµÄ×ø±êÊÇ£¨
9 |
2 |
ÈçͼËùʾ£¬Á¬½ÓOE£¬CE£¬¹ýµãA×÷AF¡ÎxÖᣬ½»yÖáÓÚµãF£¬¹ýµãB×÷BH¡ÎyÖᣬ½»AFÓÚµãH£¬¹ýµãD×÷DG¡ÎxÖᣬ½»Ö±ÏßBHÓÚµãG£¬ÔòS=
15 |
2 |
1 |
2 |
1 |
2 |
3 |
2 |
1 |
2 |
9 |
4 |
9 |
2 |
81 |
4 |
¼ÙÉè´æÔÚµãE£¨x0£¬y0£©£¬Ê¹S1=
2 |
3 |
81 |
4 |
2 |
3 |
27 |
2 |
¡ßËıßÐÎCDOEµÄ¶¥µãEÖ»ÄÜÔÚxÖáÉÏ·½£¬
¡ày0£¾0£¬
¡àS1=S¡÷OCD+S¡÷OCE=
1 |
2 |
9 |
2 |
9 |
2 |
1 |
2 |
9 |
2 |
81 |
8 |
9 |
4 |
¡à
81 |
8 |
9 |
4 |
27 |
2 |
¡ày0=
3 |
2 |
¡ßE£¨x0£¬y0£©ÔÚ¶þ´Îº¯ÊýµÄͼÏóÉÏ£¬
¡à-
1 |
2 |
x | 2 0 |
9 |
2 |
3 |
2 |
½âµÃx0=2»òx0=6£®
µ±x0=6ʱ£¬µãE£¨6£¬
3 |
2 |
¡àµãEµÄ×ø±êΪ£¨2£¬
3 |
2 |
µãÆÀ£º´ËÌ⽫³õÖÐËùѧÈý¸öÖ÷Òªº¯Êý£ºÒ»´Îº¯Êý£¨º¬Õý±ÈÀýº¯Êý£©¡¢·´±ÈÀýº¯Êý¡¢¶þ´Îº¯Êý½áºÏÆðÀ´£¬¿¼²éÁËÓôý¶¨ÏµÊý·¨Çóº¯Êý½âÎöʽ¡¢º¯ÊýÓë×ø±êµÄ¹Øϵ¼°²»¹æÔòͼÐÎÃæ»ýµÄÇ󷨣¬×ÛºÏÐÔ½ÏÇ¿£¬ÄѶÈÊÊÖУ®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿