题目内容
【题目】(1)如图1,已知以△ABC的边AB、AC分别向外作等腰直角△ABD与等腰直角△ACE,∠BAD=∠CAE=90°,连接BE和CD相交于点O,AB交CD于点F,AC交BE于点G,求证:BE=DC,且BE⊥DC.
(2)探究:若以△ABC的边AB、AC分别向外作等边△ABD与等边△ACE,连接BE和CD相交于点O,AB交CD于点F,AC交BE于G,如图2,则BE与DC还相等吗?若相等,请证明,若不相等,说明理由;并请求出∠BOD的度数?
【答案】(1)见解析;(2)∠BOD =60°.
【解析】
(1)根据等腰直角三角形的性质,结合题意,由全等三角形的判断方法(SAS)得到三角形全等,再由全等三角形的性质得出答案;
(2)根据等边三角形的性质得出AD=AB,AE=AC,∠ACE=∠AEC=60°,∠DAB=∠EAC=60°,求出∠DAC=∠BAE,根据SAS推出△DAC≌△BAE,根据全等三角形的性质得出∠BEA=∠ACD,求出∠BOC=∠ECO+∠OEC=∠ACE+∠AEC,代入求出即可.
(1)证明:∵△ABD和△ACE都是等腰直角三角形,
∴AB=AD,AE=AC,
又∵∠BAD=∠CAE=90°,
∴∠BAD+∠BAC=∠CAE+∠BAC,即∠DAC=∠BAE,
在△ABE和△ADC中,
,
∴△ABE≌△ADC(SAS),
∴BE=DC,∠ABE=∠ADC,
又∵∠BFO=∠DFA,∠ADF+∠DFA=90°,
∴∠ABE+∠BFO=90°,
∴∠BOF=∠DAF=90,
即BE⊥DC.
(2)解:结论:BE=CD.
理由:如图2,∵以AB、AC为边分别向外做等边△ABD和等边△ACE,
∴AD=AB,AE=AC,∠ACE=∠AEC=60°,∠DAB=∠EAC=60°,
∴∠DAB+∠BAC=∠EAC+∠BAC,
∴∠DAC=∠BAE,
在△DAC和△BAE中,
,
∴△DAC≌△BAE(SAS),
∴CD=BE,∠BEA=∠ACD,
∴∠BOC=∠ECO+∠OEC
=∠DCA+∠ACE+∠OEC
=∠BEA+∠ACE+∠OEC
=∠ACE+∠AEC
=60°+60°
=120°.
∴∠BOD=180°-∠BOC=60°.