题目内容
【题目】如图,一次函数的图象与反比例函数的图象交于第一象限C,D两点,坐标轴交于A、B两点,连结OC,OD(O是坐标原点).
(1)利用图中条件,求反比例函数的解析式和m的值;
(2)求△DOC的面积.
(3)双曲线上是否存在一点P,使得△POC和△POD的面积相等?若存在,给出证明并求出点P的坐标;若不存在,说明理由.
【答案】(1)、y=;m=1;(2)、7.5;(3)、(2,2)或(-2,-2).
【解析】
试题分析:(1)、根据点C的坐标求出反比例函数解析式,根据反比例函数解析式求出m的值;(2)、首先求出一次函数的解析式,然后得出点A和点B的坐标,然后利用△OAB的面积-△BOC的面积-△AOD的面积求出△DOC的面积;(3)、根据对称性得出点P的坐标.
试题解析:(1)、将C(1,4)代入反比例函数解析式可得:k=4,则反比例函数解析式为:,
将D(4,m)代入反比例函数解析式可得:m=1;
(2)、根据点C和点D的坐标得出一次函数的解析式为:y=-x+5
则点A的坐标为(0,5),点B的坐标为(5,0)
∴S△DOC=5×5÷2-5×1÷2-5×1÷2=7.5
(3)、存在,利用点CD关于直线y=x对称,P(2,2)或P(-2,-2)
练习册系列答案
相关题目
【题目】二次函数y=ax2+bx+c图象上部分点的坐标满足表格:
x | … | ﹣3 | ﹣2 | ﹣1 | 0 | 1 | … |
y | … | ﹣3 | ﹣2 | ﹣3 | ﹣6 | ﹣11 | … |
则该函数图象的顶点坐标为( )
A.(﹣3,﹣3)
B.(﹣2,﹣2)
C.(﹣1,﹣3)
D.(0,﹣6)