题目内容
【题目】如图,直线l1:y=kx+b平行于直线y=x﹣1,且与直线l2: 相交于点P(﹣1,0).
(1)求直线l1、l2的解析式;
(2)直线l1与y轴交于点A.一动点C从点A出发,先沿平行于x轴的方向运动,到达直线l2上的点B1处后,改为垂直于x轴的方向运动,到达直线l1上的点A1处后,再沿平行于x轴的方向运动,到达直线l2上的点B2处后,又改为垂直于x轴的方向运动,到达直线l1上的点A2处后,仍沿平行于x轴的方向运动,…
照此规律运动,动点C依次经过点B1 , A1 , B2 , A2 , B3 , A3 , …,Bn , An , …
①求点B1 , B2 , A1 , A2的坐标;
②请你通过归纳得出点An、Bn的坐标;并求当动点C到达An处时,运动的总路径的长?
【答案】
(1)
解:∵y=kx+b平行于直线y=x﹣1,
∴y=x+b
∵过P(﹣1,0),
∴﹣1+b=0,
∴b=1
∴直线l1的解析式为y=x+1;
∵点P(﹣1,0)在直线l2上,
∴ ;
∴ ;
∴直线l2的解析式为
(2)
解:①A点坐标为(0,1),
则B1点的纵坐标为1,设B1(x1,1),
∴ ;
∴x1=1;
∴B1点的坐标为(1,1);
则A1点的横坐标为1,设A1(1,y1)
∴y1=1+1=2;
∴A1点的坐标为(1,2),即(21﹣1,21);
同理,可得B2(3,2),A2(3,4),即(22﹣1,22);
②经过归纳得An(2n﹣1,2n),Bn(2n﹣1,2n﹣1);
当动点C到达An处时,运动的总路径的长为An点的横纵坐标之和再减去1,
即2n﹣1+2n﹣1=2n+1﹣2.
【解析】(1)根据直线l1:y=kx+b平行于直线y=x﹣1,求得k=1,再由与直线l2: 相交于点P(﹣1,0),分别求出b和m的值.(2)由直线l1的解析式,求出A点的坐标,从而求出B1点的坐标,依此类推再求得A1、B2、A2的值,从而得到An、Bn , 进而求出点C运动的总路径的长.
【题目】某家具商场计划购进某种餐桌、餐椅进行销售,有关信息如表:
原进价(元/张) | 零售价(元/张) | 成套售价(元/套) | |
餐桌 | a | 270 | 500元 |
餐椅 | a﹣110 | 70 |
已知用600元购进的餐桌数量与用160元购进的餐椅数量相同.
(1)求表中a的值;
(2)若该商场购进餐椅的数量是餐桌数量的5倍还多20张,且餐桌和餐椅的总数量不超过200张.该商场计划将一半的餐桌成套(一张餐桌和四张餐椅配成一套)销售,其余餐桌、餐椅以零售方式销售.请问怎样进货,才能获得最大利润?最大利润是多少?
【题目】6月5日是世界环境日,为了普及环保知识,增强环保意识,某市第一中学举行了“环保知识竞赛”,参赛人数1000人,为了了解本次竞赛的成绩情况,学校团委从中抽取部分学生的成绩(满分为100分,得分取整数)进行统计,并绘制出不完整的频率分布表和不完整的频数分布直方图如下:
(1)直接写出a的值,并补全频数分布直方图.
分组 | 频数 | 频率 |
49.5~59.5 | 0.08 | |
59.5~69.5 | 0.12 | |
69.5~79.5 | 20 | |
79.5~89.5 | 32 | |
89.5~100.5 | a |
(2)若成绩在80分以上(含80分)为优秀,求这次参赛的学生中成绩为优秀的约为多少人?
(3)若这组被抽查的学生成绩的中位数是80分,请直接写出被抽查的学生中得分为80分的至少有多少人?