题目内容

【题目】阅读材料,解答问题:

我们可以利用解二元一次方程组的代入消元法解形如的二元二次方程组,实质是将二元二次方程组转化为一元一次方程或一元二次方程来求解.其解法如下:

解:由②得:y=2x-5

将③代入①得:x2+(2x-5)2=10

整理得:x2-4x+3=0,解得x1=1,x2=3

将x1=1,x2=3代入③得y1=1×2-5=-3,y2=2×3-5=1

∴原方程组的解为

(1)请你用代入消元法解二元二次方程组:

(2)若关x,y的二元二次方程组有两组不同的实数解,求实数a的取信范围.

【答案】(1) (2) a<-且a≠-4.

【解析】

试题分析:(1)先消去一个未知数再解关于另一个未知数的次方程,把求得结果代入一个较简单的方程中即可;

(2)先消去一个未知数,得到关于另一个未知数的一元二次方程,根据一元二次方程根的判别式解答即可.

试题解析:(1)由①得,y=2x-3③,

把③代入②得,(2x-3)2-4x2+6x-3=0,

整理的,6x=6,

解得x=1,

把x=1代入③得,y=-1,

故原方程组的解为

(2)由①得,y=1-2x③,

把③代入②得,ax2+(1-2x)2+2x+1=0,

整理得,(a+4)x2-2x+2=0,

由题意得,4-4×2×(a+4)>0,

解得a<-

∵a+4≠0,

∴a≠-4,

∴a<-且a≠-4.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网