题目内容
【题目】如图,在△ABC中,AB=BC,BE⊥AC于点E,AD⊥BC于点D,
∠BAD=45°,AD与BE交于点F,连接CF.
(1)求证:BF=2AE;
(2)若CD= ,求AD的长.
【答案】
(1)证明:∵ AD⊥BC,∠BAD=45°,
∴ ∠ABD=∠BAD=45°.
∴ AD=BD.
∵ AD⊥BC,BE⊥AC,
∴ ∠CAD+∠ACD=90°,∠CBE+∠ACD=90o
∴ ∠CAD=∠CBE.
又∵ ∠CDA=∠FDB=90°,
∴ △ADC≌△BDF.
∴ AC=BF.
∵ AB=BC,BE⊥AC,
∴ AE=EC,即AC=2AE.
∴ BF=2AE
(2)解:∵ △ADC≌△BDF,∴ DF=CD= .
∴ 在Rt△CDF中,CF= =2.
∵ BE⊥AC,AE=EC,∴ AF=FC=2.
∴ AD=AF+DF=2+
【解析】(1)由AD⊥BC,∠BAD=45°,证得AD=BD.再根据垂直的定义及同角的余角相等得出∠CAD=∠CBE.因此证明△ADC≌△BDF,得出AC=BF.即可得出结论。
(2)由△ADC≌△BDF得出DF=CD,在Rt△CDF中,利用勾股定理求出CF的长,从而求出AD的长。