题目内容
【题目】如图,直线AB与x轴交于点A(1,0),与y轴交于点B(0,﹣2).
(1)求直线AB的解析式;
(2)若直线AB上的点C在第一象限,且S△BOC=2,求点C的坐标.
【答案】
(1)解:设直线AB的解析式为y=kx+b(k≠0),
∵直线AB过点A(1,0)、点B(0,﹣2),
∴ ,
解得 ,
∴直线AB的解析式为y=2x﹣2
(2)解:设点C的坐标为(x,y),
∵S△BOC=2,
∴ 2x=2,
解得x=2,
∴y=2×2﹣2=2,
∴点C的坐标是(2,2)
【解析】(1)设直线AB的解析式为y=kx+b,将点A(1,0)、点B(0,﹣2)分别代入解析式即可组成方程组,从而得到AB的解析式;(2)设点C的坐标为(x,y),根据三角形面积公式以及S△BOC=2求出C的横坐标,再代入直线即可求出y的值,从而得到其坐标.
【考点精析】根据题目的已知条件,利用确定一次函数的表达式的相关知识可以得到问题的答案,需要掌握确定一个一次函数,需要确定一次函数定义式y=kx+b(k不等于0)中的常数k和b.解这类问题的一般方法是待定系数法.
【题目】某中学七、八年级各选派10名选手参加学校举办的知识竞赛,竞赛计分采用10分制,选手得分均为整数,成绩达到6分或6分以上为合格,达到9分或10分为优秀.七、八年级两支代表队选手成绩分布的条形统计图和成绩统计分析表如下所示.
队别 | 平均分 | 众数 | 中位数 | 方差 | 合格率 | 优秀率 |
七年级 | 6.7 | a | m | 3.41 | 90% | 20% |
八年级 | 7.1 | p | q | 1.69 | 80% | 10% |
(1)请依据图表中的数据,求出a的值;并直接写出表格中m,p,q的值;
(2)有人说七年级的合格率、优秀率均高于八年级,所以七年级队成绩比八年级队好,但也有人说八年级队成绩比七年级队好.请你给出两条支持八年级队成绩好的理由、