题目内容

【题目】如图,AB为⊙O的直径,C为⊙O上一点,AD与过点C的切线互相垂直,垂足为点D,AD交⊙O于点E,连接CE,CB.
(1)求证:CE=CB;
(2)若AC=2 ,CE= ,求AE的长.

【答案】
(1)证明连接OC,

∵CD是⊙O的切线,

∴OC⊥CD.

∵AD⊥CD,

∴OC∥AD,

∴∠1=∠3.

又OA=OC,

∴∠2=∠3,

∴∠1=∠2,

∴CE=CB;


(2)解:∵AB是直径,

∴∠ACB=90°,

∵AC=2 ,CB=CE=

∴AB= = =5.

∵∠ADC=∠ACB=90°,∠1=∠2,

∴△ADC∽△ACB,

= = ,即 = =

∴AD=4,DC=2.

在直角△DCE中,DE= =1,

∴AE=AD﹣ED=4﹣1=3.


【解析】(1)连接OC,利用切线的性质和已知条件推知OC∥AD,根据平行线的性质和等角对等边证得结论;(2)AE=AD﹣ED,通过相似三角形△ADC∽△ACB的对应边成比例求得AD=4,DC=2.在直角△DCE中,由勾股定理得到DE= =1,故AE=AD﹣ED=3.
【考点精析】掌握勾股定理的概念和切线的性质定理是解答本题的根本,需要知道直角三角形两直角边a、b的平方和等于斜边c的平方,即;a2+b2=c2;切线的性质:1、经过切点垂直于这条半径的直线是圆的切线2、经过切点垂直于切线的直线必经过圆心3、圆的切线垂直于经过切点的半径.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网