题目内容

【题目】如图,在平面直角坐标系中,点A的坐标为(﹣2,0),点B的坐标为(0,n),以点B为直角顶点,点C在第二象限内,作等腰直角△ABC.则点C的坐标是_____(用字母n表示).

【答案】(﹣n,2+n).

【解析】

CE⊥y轴于E,如图1,根据题意通过“角角边”证明△CBE≌△BAO,得到CE=BO=n,BE=AO=2,然后根据C点所在象限即可得到答案.

(1)作CE⊥y轴于E,如图1,

∵A(﹣2,0),B(0,n),

∴OA=2,OB=n,

∵△ABC为等腰直角三角形,

∴∠CEB=∠AOB=∠CBA=90°,BC=AB,

∴∠ECB+∠EBC=90°,∠CBE+∠ABO=90°,

∴∠ECB=∠ABO,

△CBE△BAO

∴△CBE≌△BAO(AAS),

∴CE=BO=n,BE=AO=2,

OE=2+n,

∴C(﹣n,2+n).

故答案为:(﹣n,2+n).

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网