题目内容
【题目】已知,如图,∠BAE+∠AED=180°,∠1=∠2,那么∠M=∠N(下面是推理过程,请你填空).
解:∵∠BAE+∠AED=180°(已知)
∴ ∥ (同旁内角互补,两直线平行)
∴∠BAE= (两直线平行,内错角相等)
又∵∠1=∠2
∴∠BAE﹣∠1= ﹣
即∠MAE=
∴ ∥ (内错角相等,两直线平行)
∴∠M=∠N(两直线平行,内错角相等)
【答案】AB,CD,∠AEC,∠AEC,∠2,∠AEN,AE,EN
【解析】
试题分析:由于∠BAE+∠AED=180°,根据平行线的判定定理可知AB∥CD,则∠BAE=∠AEC,因为∠1=∠2,可推出∠MAE=∠AEN,AM∥EN,∠M=∠N.
解:∵∠BAE+∠AED=180°(已知)
∴AB∥CD(同旁内角互补,两直线平行)
∴∠BAE=∠AEC(两直线平行,内错角相等)
又∵∠1=∠2
∴∠BAE﹣∠1=∠AEC﹣∠2
即∠MAE=∠AEN
∴AM∥EN(内错角相等,两直线平行)
∴∠M=∠N(两直线平行,内错角相等).
![](http://thumb.zyjl.cn/images/loading.gif)
【题目】为了鼓励市民节约用水,我市居民使用自来水计费方式实施阶梯水价,具体标准见表1,表2分别是小明、小丽、小斌、小宇四家2017年的年用水量和缴纳水费情况.
表1:大连市居民自来水实施阶梯水价标准情况:
阶梯 | 每户年用水量(立方米) | 水价(含污水处理费)(元/立方米) |
第一阶梯 | 0~m(含m) | a |
第二阶梯 | m~240(含240) | 4.40 |
第三阶梯 | 240以上 | 7.85 |
表2:四个家庭2017年的年用水量和缴纳水费情况:
家庭 | 小明 | 小丽 | 小斌 | 小宇 |
用水量(立方米) | 50 | 100 | 200 | 220 |
水费(元) | 162.5 | 325 | 673 | 761 |
请你根据表1、表2提供的数据回答下列问题:
(1)写出表1中的a,m的值;
(2)小颖家2017年使用自来水共缴纳水费827元,则她家2017年的年用水量是多少立方米?
【题目】小李在某商场购买两种商品若干次(每次
商品都买) ,其中前两次均按标价购买,第三次购买时,
商品同时打折.三次购买
商品的数量和费用如下表所示:
购买A商品的数量/个 | 购买B商品的数量/个 | 购买总费用/元 | |
第一次 | |||
第二次 | |||
第三次 |
(1)求商品的标价各是多少元?
(2)若小李第三次购买时商品的折扣相同,则商场是打几折出售这两种商品的?
(3)在(2)的条件下,若小李第四次购买商品共花去了
元,则小李的购买方案可能有哪几种?