题目内容
【题目】在一个不透明的口袋中装有4张相同的纸牌,它们分别标有数字1,2,3,4.随机地摸取出一张纸牌然后放回,再随机摸取出一张纸牌,(1)计算两次摸取纸牌上数字之和为5的概率;
(2)甲、乙两个人进行游戏,如果两次摸出纸牌上数字之和为奇数,则甲胜;如果两次摸出纸牌上数字之和为偶数,则乙胜.这是个公平的游戏吗?请说明理由.
【答案】(1);(2)这个游戏公平,理由见解析
【解析】
试题分析:(1)先列表展示所有可能的结果数为16,再找出两次摸取纸牌上数字之和为5的结果数,然后根据概率的概念计算即可;
(2)从表中找出两次摸出纸牌上数字之和为奇数的结果数和两次摸出纸牌上数字之和为偶数的结果数,分别计算这两个事件的概率,然后判断游戏的公平性.
解:根据题意,列表如下:
甲 乙 | 1 | 2 | 3 | 4 |
1 | 2 | 3 | 4 | 5 |
2 | 3 | 4 | 5 | 6 |
.3 | 4 | 5 | 6 | 7 |
4 | 5 | 6 | 7 | 8 |
由上表可以看出,摸取一张纸牌然后放回,再随机摸取出纸牌,可能结果有16种,它们出现的可能性相等.
(1)两次摸取纸牌上数字之和为5(记为事件A)有4个,P(A)==;
(2)这个游戏公平,理由如下:
∵两次摸出纸牌上数字之和为奇数(记为事件B)有8个,P(B)==,
两次摸出纸牌上数字之和为偶数(记为事件C)有8个,P(C)==,
∴两次摸出纸牌上数字之和为奇数和为偶数的概率相同,所以这个游戏公平.
练习册系列答案
相关题目