题目内容
【题目】如图,在△ABC中,点D、E分别是边BC、AC的中点,过点A作AF∥BC交DE的延长线于F点,连接AD、CF.
(1)求证:四边形ADCF是平行四边形;
(2)当△ABC满足什么条件时,四边形ADCF是菱形?为什么?
【答案】(1)见解析;(2)当△ABC是直角三角形时,四边形ADCF是菱形
【解析】
试题分析:(1)首先利用平行四边形的判定方法得出四边形ABDF是平行四边形,进而得出AF=DC,利用一组对边相等且平行的四边形是平行四边形,进而得出答案;
(2)利用直角三角形的性质结合菱形的判定方法得出即可.
(1)证明:∵点D、E分别是边BC、AC的中点,
∴DE∥AB,
∵AF∥BC,
∴四边形ABDF是平行四边形,
∴AF=BD,则AF=DC,
∵AF∥BC,
∴四边形ADCF是平行四边形;
(2)当△ABC是直角三角形时,四边形ADCF是菱形,
理由:∵点D是边BC的中点,△ABC是直角三角形,
∴AD=DC,
∴平行四边形ADCF是菱形.
练习册系列答案
相关题目
【题目】某公司欲招聘一名工作人员,对甲、乙两位应聘者进行面试和笔试,他们的成绩(百分制)如下表所示:
应聘者 | 面试 | 笔试 |
甲 | 87 | 90 |
乙 | 91 | 82 |
若公司分别赋予面试成绩和笔试成绩6和4的权,计算甲、乙两人各自的平均成绩,谁将被录取?