题目内容
【题目】在一个不透明的口袋里有标号为的五个小球,除数字不同外,小球没有任何区别,摸球前先搅拌均匀,每次摸一个球.
(1)下列说法:
①摸一次,摸出一号球和摸出号球的概率相同;
②有放回的连续摸次,则一定摸出号球两次;
③有放回的连续摸次,则摸出四个球标号数字之和可能是.
其中正确的序号是
(2)若从袋中不放回地摸两次,求两球标号数字是一奇一偶的概率,(用列表法或树状图)
【答案】(1)①③;(2)
【解析】
(1)①摸一次,1号与5号球摸出概率相同,正确;
②有放回的连续摸10次,不一定摸出2号球,错误;
③有放回的连续摸4次,若4次均摸出5号球:5+5+5+5=20,则摸出四个球标号数字之和可能是20,正确;
(2)列表得出所有等可能的情况数,找出两球标号数字是一奇一偶的情况数,即可求出所求的概率.
(1)①摸一次,1号与5号球摸出概率相同,正确;
②有放回的连续摸10次,不一定摸出2号球,错误;
③有放回的连续摸4次,若4次均摸出5号球:5+5+5+5=20,则摸出四个球标号数字之和可能是20,正确;
故答案为:①③;
(2)列表如下:
1 | 2 | 3 | 4 | 5 | |
1 | ﹣﹣﹣ | (1,2) | (1,3) | (1,4) | (1,5) |
2 | (2,1) | ﹣﹣﹣ | (2,3) | (2,4) | (2,5) |
3 | (3,1) | (3,2) | ﹣﹣﹣ | (3,4) | (3,5) |
4 | (4,1) | (4,2) | (4,3) | ﹣﹣﹣ | (4,5) |
5 | (5,1) | (5,2) | (5,3) | (5,4) | ﹣﹣﹣ |
所有等可能的情况有20种,其中数字是一奇一偶的情况有12种,
则P(一奇一偶)=.
【题目】某农科所在相同条件下做某作物种子发芽率的实验,结果如下表所示:
种子个数 | 200 | 300 | 500 | 700 | 800 | 900 | 1000 |
发芽种子个数 | 187 | 282 | 435 | 624 | 718 | 814 | 901 |
发芽种子率 | 0.935 | 0.940 | 0.870 | 0.891 | 0.898 | 0.904 | 0.901 |
下面有四个推断:
①种子个数是700时,发芽种子的个数是624,所以种子发芽的概率是0.891;
②随着参加实验的种子数量的增加,发芽种子的频率在0.9附近摆动,显示出一定的稳定性,可以估计种子发芽的概率约为0.9(精确到0.1);
③实验的种子个数最多的那次实验得到的发芽种子的频率一定是种子发芽的概率;
④若用频率估计种子发芽的概率约为0.9,则可以估计种子中大约有的种子不能发芽.
其中合理的是______.