题目内容
【题目】阅读下面材料:
小聪遇到这样一个有关角平分线的问题:如图1,在中,,平分,,,求的长.
小聪思考:因为平分,所以可在边上取点,使,连接.这样很容易得到,经过推理能使问题得到解决(如图2).
请回答:(1)是 三角形.
(2)的长为 .
参考小聪思考问题的方法,解决问题:
(3)如图3,已知中,,平分,.求的长.
【答案】(1)等腰;(2)5.8;(3)4.3.
【解析】
(1)由已知条件和辅助线的作法,证得△ACD≌△ECD,得到AD=DE,∠A=∠DEC,由于∠A=2∠B,推出∠DEC=2∠B,等量代换得到∠B=∠EDB,得到△BDE是等腰三角形;
(2)由△BDE是等腰三角形可得BE=DE=AD=2.2,结合EC=AC可得结论;
(3)在BA边上取点E,使BE=BC=2,连接DE,得到△DEB≌△DBC,在DA边上取点F,使DF=DB,连接FE,得到△BDE≌△FDE,即可推出结论.
(1) 是等腰三角形,
在与中,
,
∴,
∴,
∵,
∴,
∴,
∴是等腰三角形;
(2)∵是等腰三角形,
∴BE=DE,
∵,
∴BC=BE+EC=2.2+3.6=5.8
故的长为5.8,
(3)∵中,,
∴,
∵平分,
∴,
在边上取点,使,连接,
则,
∴,
∴,
∴,
在边上取点,使,连接,
则,
∴,
∵,
∴,
∴,
∵,
∴.
【题目】某工厂甲、乙两个部门各有员工400人,为了解这两个部门员工的生产技能情况,进行了抽样调查,过程如下,请补充完整.
收集数据
从甲、乙两个部门各随机抽取20名员工,进行了生产技能测试,测试成绩(百分制)如下:
甲 78 86 74 81 75 76 87 70 75 90
75 79 81 70 74 80 86 69 83 77
乙 93 73 88 81 72 81 94 83 77 83
80 81 70 81 73 78 82 80 70 40
整理、描述数据
按如下分数段整理、描述这两组样本数据:
成绩 人数 部门 | 40≤x≤49 | 50≤x≤59 | 60≤x≤69 | 70≤x≤79 | 80≤x≤89 | 90≤x≤100 |
甲 | 0 | 0 | 1 | 11 | 7 | 1 |
乙 |
(说明:成绩80分及以上为生产技能优秀,70--79分为生产技能良好,60--69分为生产技能合格,60分以下为生产技能不合格)
分析数据
两组样本数据的平均数、中位数、众数如下表所示:
部门 | 平均数 | 中位数 | 众数 |
甲 | 78.3 | 77.5 | 75 |
乙 | 78 | 80.5 | 81 |
得出结论:
.估计乙部门生产技能优秀的员工人数为____________;
.可以推断出_____________部门员工的生产技能水平较高,理由为_____________.(至少从两个不同的角度说明推断的合理性)