题目内容
【题目】“新禧”杂货店去批发市场购买某种新型儿童玩具,第一次用1200元购得玩具若干个,并以7元的价格出售,很快就售完.由于该玩具深受儿童喜爱,第二次进货时每个玩具的批发价已比第一次提高了20%,他用1500元所购买的玩具数量比第一次多10个,再按8元售完,问该老板两次一共赚了多少钱?
【答案】解:设这种新型儿童玩具第一次进价为x元/个,则第二次进价为1.2x元/个, 根据题意,得 ﹣ =10,
变形为:1500﹣1440=12x,
解得:x=5,
经检验,x=5是原方程的解,
则该老板这两次购买玩具一共盈利为: (7﹣1.2×5)+ ×(7﹣5)=730(元).
答:该老板两次一共赚了730元
【解析】设这种新型儿童玩具第一次进价为x元/个,则第二次进价为1.2x元/个,分别可以表示出第一次购买玩具的数量和第二次购买玩具的数量,根据两次购买玩具的数量之间的关系建立方程求出其解就可以了.
【考点精析】通过灵活运用分式方程的应用,掌握列分式方程解应用题的步骤:审题、设未知数、找相等关系列方程、解方程并验根、写出答案(要有单位)即可以解答此题.
【题目】某校1200名学生参加了全区组织的“经典诵读”活动,该校随机选取部分学生,对他们在三、四两个月的诵读时间进行调查,下面是根据调查数据制作的统计图表的一部分.
根据以上信息,解答下列问题:
(1)本次调查的学生数为 人;
(2)图表中的a、b、c的值分别为 , , ;
(3)在被调查的学生中,四月份日人均诵读时间在1<x≤1.5范围内的人数比三月份在此范围的人数多 人;
(4)试估计该校学生四月份人均诵读时间在1小时以上的人数.
四月日人均诵读时间的统计表
日人均诵读时间x/h | 人数 | 百分比 |
0≤x≤0.5 | 6 | |
0.5<x≤1 | 30 | |
1<x≤1.5 | 50% | |
1.5<x≤2 | 10 | 10% |
2<x≤2.5 | b | c |
三月日人均诵读时间的频数分布直方图