题目内容
【题目】如图,直线l上有A、B两点,AB=24cm,点O是线段AB上的一点,OA=2OB.
(1)OA=cm,OB=cm.
(2)若点C是线段AO上一点,且满足AC=CO+CB,求CO的长.
(3)若动点P、Q分别从A、B同时出发,向右运动,点P的速度为2cm/s,点Q的速度为1cm/s,设运动时间为t(s),当点P与点Q重合时,P、Q两点停止运动.
①当t为何值时,2OP﹣OQ=8.
②当点P经过点O时,动点M从点O出发,以3cm/s的速度也向右运动.当点M追上点Q后立即返回,以同样的速度向点P运动,遇到点P后立即返回,又以同样的速度向点Q运动,如此往返,直到点P、Q停止时,点M也停止运动.在此过程中,点M行驶的总路程为cm.
【答案】
(1)16;8
(2)解:设CO=x,则AC=16﹣x,BC=8+x,
∵AC=CO+CB,
∴16﹣x=x+8+x,
∴x= ,
∴CO=
(3)48
【解析】解:(1)∵AB=24,OA=2OB,
∴20B+OB=24,
∴OB=8,0A=16,
故答案分别为16,8.(3)①当点P在点O左边时,2(16﹣2t)﹣(8+t)=8,t= ,
当点P在点O右边时,2(2t﹣16)﹣(8+t)=8,t=16,
∴t= 或16s时,2OP﹣OQ=8.
②设点M运动的时间为ts,由题意:t(2﹣1)=16,t=16,
∴点M运动的路程为16×3=48cm.
所以答案是48cm.
【考点精析】根据题目的已知条件,利用两点间的距离的相关知识可以得到问题的答案,需要掌握同轴两点求距离,大减小数就为之.与轴等距两个点,间距求法亦如此.平面任意两个点,横纵标差先求值.差方相加开平方,距离公式要牢记.
练习册系列答案
相关题目