题目内容
【题目】如图,已知抛物线y=ax2过点A(﹣3,).
(1)求抛物线的解析式;
(2)已知直线l过点A,M(,0)且与抛物线交于另一点B,与y轴交于点C,求证:MC2=MAMB;
(3)若点P,D分别是抛物线与直线l上的动点,以OC为一边且顶点为O,C,P,D的四边形是平行四边形,求所有符合条件的P点坐标.
【答案】(1)y=x2;(2)见解析;(3)P(﹣1﹣,2+)或(﹣1+,2﹣)或(﹣2,1).
【解析】
(1)利用待定系数法即可解决问题.
(2)构建方程组确定点B的坐标,再利用平行线分线段成比例定理解决问题即可.
(3)如图2中,设P(t,t2),根据PD=CD构建方程求出t即可解决问题.
解:(1)把点A(﹣3,)代入y=ax2,
得到=9a,
∴a=,
∴抛物线的解析式为y=x2.
(2)设直线l的解析式为y=kx+b,则有,
解得,
∴直线l的解析式为y=﹣x+,
令x=0,得到y=,
∴C(0,),
由,解得或,
∴B(1,),
如图1中,过点A作AA1⊥x轴于A1,过B作BB1⊥x轴于B1,则BB1∥OC∥AA1,
∴===,===,
∴=,
即MC2=MAMB.
(3)如图2中,设P(t,t2)
∵OC为一边且顶点为O,C,P,D的四边形是平行四边形,
∴PD∥OC,PD=OC,
∴D(t,﹣t+),
∴|t2﹣(﹣t+)|=,
整理得:t2+2t﹣6=0或t2+2t=0,
解得t=﹣1﹣或﹣1=或﹣2或0(舍弃),
∴P(﹣1﹣,2+)或(﹣1+,2﹣)或(﹣2,1).
练习册系列答案
相关题目