题目内容
【题目】阅读下列材料:
我们定义:若一个四边形的一条对角线把四边形分成两个等腰三角形,则这条对角线叫这个四边形的和谐线,这个四边形叫做和谐四边形.如正方形就是和谐四边形.结合阅读材料,完成下列问题:
(1)下列哪个四边形一定是和谐四边形 .
A.平行四边形 B.矩形 C.菱形 D.等腰梯形
(2)命题:“和谐四边形一定是轴对称图形”是 命题(填“真”或“假”).
(3)如图,等腰Rt△ABD中,∠BAD=90°.若点C为平面上一点,AC为凸四边形ABCD的和谐线,且AB=BC,请求出∠ABC的度数.
【答案】(1) C ;(2)假;(3)∠ABC的度数为60°或90°或150°.
【解析】
(1)由和谐四边形的定义,即可得到菱形是和谐四边形;
(2)和谐四边形不一定是轴对称图形,举出反例即可;
(3)首先根据题意画出图形,然后由AC是四边形ABCD的和谐线,可以得出△ACD是等腰三角形,从图1,图2,图3三种情况运用等边三角形的性质,正方形的性质和30°的直角三角形性质,即可求出∠ABC的度数.
(1)根据和谐四边形定义,平行四边形,矩形,等腰梯形的对角线不能把四边形分成两个等腰三角形,菱形的一条对角线能把四边形分成两个等腰三角形够.
故选C.
(2)和谐四边形不一定是轴对称图形,如图所示:
∠C=45°,直角梯形ABCD是和谐四边形,但不是轴对称图形,
故答案为:假;
(3)∵AC是四边形ABCD的和谐线,且AB=BC,
∴△ACD是等腰三角形,
∵在等腰Rt△ABD中,AB=AD,
∴AB=AD=BC,
①如图1,当AD=AC时,
∴AB=AC=BC,∠ACD=∠ADC
∴△ABC是正三角形,
∴∠ABC=60°;
②如图2,当DA=DC时,
∴AB=AD=BC=CD.
∵∠BAD=90°,
∴四边形ABCD是正方形,
∴∠ABC=90°;
③如图3,当CA=CD时,过点C作CE⊥AD于E,过点B作BF⊥CE于F,
∵AC=CD,CE⊥AD,
∴AE=ED,∠ACE=∠DCE.
∵∠BAD=∠AEF=∠BFE=90°,
∴四边形ABFE是矩形,
∴BF=AE.
∵AB=AD=BC,
∴BF=BC,
∴∠BCF=30°.
∵AB=BC,
∴∠ACB=∠BAC.
∵AB∥CE,
∴∠BAC=∠ACE,
∴∠ACB=∠BAC=∠BCF=15°,
∴∠ABC=150°.
【题目】开通了,中国联通公布了资费标准,其中包月186元时,超出部分国内拨打0.36元/分.由于业务多,小明的爸爸打电话已超出了包月费.下表是超出部分国内拨打的收费标准.
时间/分 | 1 | 2 | 3 | 4 | 5 | … |
电话费/元 | 0.36 | 0.72 | 1.08 | 1.44 | 1.80 | … |
(1)这个表反映了哪两个变量之间的关系?哪个是自变量?
(2)如果用x表示超出时间,y表示超出部分的电话费,那么y与x的关系式是什么?
(3)如果打电话超出分钟,需多付多少电话费?
(4)某次打电话的费用超出部分是元,那么小明的爸爸打电话超出几分钟?