题目内容
【题目】图①是一个演讲台,图②是演讲台的侧面示意图,支架BC是一段圆弧,台面与两支架的连接点A,B间的距离为30cm,CD为水平地面,∠ADC=75°,∠DAB=60°,BD⊥CD.
(1)求BD的长(结果保留整数,参考数据:sin75°≈0.97,cos75°≈0.26,≈1.7);
(2)如图③,若圆弧BC所在圆的圆心O在CD的延长线上,且OD=CD,求支架BC的长(结果保留根号).
【答案】(1)98cm;(2) cm
【解析】
(1)过点B作BE⊥AD于点E,根据三角函数解答即可;
(2)连接BC,OB,根据等边三角形的判定和弧长公式解答即可.
解:(1)过点B作BE⊥AD于点E,
在Rt△ABE中,AB=30 cm,∠DAB=60°,
∴BE=ABsin∠DAB=30×=
(cm)
∵BD⊥DC,∠ADC=75°,
∴∠ADB=15°,
∴∠EBD=75°.
在Rt△DBE中,BD=(cm)
(2)连接BC,OB.
∵BD⊥OC,OD=CD,
∴BC=OB.
又∵OB=OC,
∴△OBC是等边三角形,
∴∠BOC=60°,
∴OB=(cm),
∴弧BC的长为 =
(cm).
∴支架BC的长为 cm
![](http://thumb.zyjl.cn/images/loading.gif)
【题目】某校七年级6个班的180名学生即将参加北京市中学生开放性科学实践活动送课到校课程的学习.学习内容包括以下7个领域:A.自然与环境,B.健康与安全,C.结构与机械,D.电子与控制,E.数据与信息,F.能源与材料,G.人文与历史.为了解学生喜欢的课程领域,学生会开展了一次调查研究,请将下面的过程补全.
收集数据学生会计划调查30名学生喜欢的课程领域作为样本,下面抽样调查的对象选择合理的是 ;(填序号)
①选择七年级1班、2班各15名学生作为调查对象
②选择机器人社团的30名学生作为调查对象
③选择各班学号为6的倍数的30名学生作为调查对象
调查对象确定后,调查小组获得了30名学生喜欢的课程领域如下:
A,C,D,D,G,G,F,E,B,G,
C,C,G,D,B,A,G,F,F,A,
G,B,F,G,E,G,A,B,G,G
整理、描述数据整理、描述样本数据,绘制统计图表如下,请补全统计表和统计图.
某校七年级学生喜欢的课程领域统计表
课程领域 | 人数 |
A | 4 |
B | 4 |
C | 3 |
D | 3 |
E | 2 |
F | 4 |
G | 10 |
合计 | 30 |
分析数据、推断结论请你根据上述调查结果向学校推荐本次送课到校的课程领域,你的推荐是 (填A﹣G的字母代号),估计全年级大约有 名学生喜欢这个课程领域.