题目内容
分析:根据切线的性质定理,切线垂直于过切点的半径,即可求得∠OAP,∠OBP的度数,根据四边形的内角和定理即可求解.
解答:解:∵PA是圆的切线.
∴∠OAP=90°
同理∠OBP=90°
根据四边形内角和定理可得:∠AOB=360°-∠OAP-∠OBP-∠P=360°-90°-90°-60°=120°
故选C.
∴∠OAP=90°
同理∠OBP=90°
根据四边形内角和定理可得:∠AOB=360°-∠OAP-∠OBP-∠P=360°-90°-90°-60°=120°
故选C.
点评:本题主要考查了切线的性质定理,对定理的正确理解是解题的关键.
练习册系列答案
相关题目