题目内容
【题目】一个矩形的长为a,宽为b(a>0,b>0),则矩形的面积为ab.代数式xy(x>0,y>0)可以看作是边长为x和y的矩形的面积.我们可以由此解一元二次方程:x2+x﹣6=0(x>0).具体过程如下:
①方程变形为x(x+1)=6.
②画四个边长为x+1、x的矩形如图放置;
③由面积关系求解方程.
∵SABCD=(x+x+1)2,又SABCD=4x(x+1)+12.
∴(x+x+1)2=4x(x+1)+1,又x(x+1)=6,
∴(2x+1)2=25,
∵x>0,
∴x=2.
参照上述方法求关于x的二次方程x2+mx﹣n=0的解(x>0,m>0,n>0).(要求:画出示意图,标注相关线段的长度,写出解题步骤)
【答案】画图见解析;x=(﹣m)(m>0,n>0).
【解析】
根据已知求一元二次方程的具体过程即可求解.
解:①方程变形为x(x+m)=n;
②画四个边长为x+m、x的矩形如图放置;
③由面积关系求解方程.
∵SABCD=(x+x+m)2,又SABCD=4x(x+m)+m2.
∴(x+x+m)2=4x(x+m)+m2,又x(x+m)=n,
∴(2x+m)2=4n+m2,∵x>0,∴x=(﹣m)(m>0,n>0).
练习册系列答案
相关题目