题目内容
【题目】如图有一座抛物线形拱桥,桥下面在正常水位是AB宽20m,水位上升3m就达到警戒线CD,这是水面宽度为10m。
(1)在如图的坐标系中求抛物线的解析式。
(2)若洪水到来时,水位以每小时0.2m的速度上升,从警戒线开始,再持续多少小时才能到拱桥顶?
【答案】5小时
【解析】试题分析:(1)首先设所求抛物线的解析式为:y=ax2(a≠0),再根据题意得到C(-5,-1),利用待定系数法即可得到抛物线解析式;
(2)根据抛物线解析式计算出A点坐标,进而得到F点坐标,然后计算出EF的长,再算出持续时间即可.
试题解析:(1)设所求抛物线的解析式为:y=ax2(a≠0),
∵由CD=10m,CD到拱桥顶E的距离仅为1m,
则C(-5,-1),
把C的坐标分别代入y=ax2得:a=-,
故抛物线的解析式为y=-x2;
(2)如图:
∵AB宽20m,
∴设A(-10,b),
把A点坐标代入抛物线的解析式为y=-x2中,
解得:b=-4,
∴F(0,-4),
∴EF=3,
∵水位以每小时0.3m的速度上升,
∴3÷0.3=10(小时),
答:从正常水位开始,持续10小时到达警戒线.
【题目】甲、乙两校参加区教育局举办的学生英语口语竞赛,两校参赛人数相等.比赛结束后,发现学生成绩分别为7分、8分、9分、10分(满分为10分).依据统计数据绘制了如图所示的尚不完整的统计图表.
甲校成绩统计表
分数 | 7分 | 8分 | 9分 | 10分 |
人数 | 11 | 0 | 8 |
(1)在图①中,“7分”所在扇形的圆心角等于______;
(2)请你将②的统计图补充完整;
(3)经计算,乙校的平均分是8.3分,中位数是8分,请写出甲校的平均分、中位数;并从平均分和中位数的角度分析哪个学校成绩较好;
(4)如果该教育局要组织8人的代表队参加市级团体赛,为便于管理,决定从这两所学校中的一所挑选参赛选手,请你分析,应选哪所学校?