题目内容
【题目】有一块矩形地块,米,米,为美观,拟种植不同的花卉,如图所示,将矩形分割成四个等腰梯形及一个矩形,其中梯形的高相等,均为米.现决定在等腰梯形和中种植甲种花卉;在等腰梯形和中种植乙种花卉;在矩形中种植丙种花卉.甲、乙、丙三种花卉的种植成本分别为20元/米、60 元/米、40元/米,设三种花卉的种植总成本为元.
(1)当时,求种植总成本;
(2)求种植总成本与的函数表达式,并写出自变量的取值范围;
(3)若甲、乙两种花卉的种植面积之差不超过120米,求三种花卉的最低种植总成本.
【答案】(1)当时,;(2);(3)当时,最小为21600.
【解析】
(1)根据,即可求解;
(2)参考(1),由题意得:;
(3),,则,即可求解.
解:(1)当时,,,
故
;
(2),,参考(1),由题意得:;
(3),
同理,
甲、乙两种花卉的种植面积之差不超过120米,
,
解得:,
故,
而随的增大而减小,故当时,的最小值为21600,
即三种花卉的最低种植总成本为21600元.
练习册系列答案
相关题目