题目内容
【题目】如图,在平面直角坐标系中,半径为2的与轴的正半轴交于点,点是上一动点,点为弦的中点,直线与轴、轴分别交于点、,则面积的最小值为________.
【答案】2
【解析】
如图,连接OB,取OA的中点M,连接CM,过点M作MN⊥DE于N.首先证明点C的运动轨迹是以M为圆心,1为半径的⊙M,设⊙M交MN于C′.求出MN,当点C与C′重合时,△C′DE的面积最小.
解:如图,连接OB,取OA的中点M,连接CM,过点M作MN⊥DE于N.
∵AC=CB,AM=OM,
∴MC=OB=1,
∴点C的运动轨迹是以M为圆心,1为半径的⊙M,设⊙M交MN于C′.
∵直线y=x-3与x轴、y轴分别交于点D、E,
∴D(4,0),E(0,-3),
∴OD=4,OE=3,
∴,
∵∠MDN=∠ODE,∠MND=∠DOE,
∴△DNM∽△DOE,
∴,
∴,
∴,
当点C与C′重合时,△C′DE的面积最小,△C′DE的面积最小值,
故答案为2.
练习册系列答案
相关题目