题目内容

【题目】如图,AB与CD相交于点O,且∠OAD=∠OCB,延长AD、CB交于点P,那么图中的相似三角形的对数为

【答案】2
【解析】解:如图,

∵在△ABP与△CDP中,∠BAP=∠DCP,∠APB=∠CPD,
∴△ABP∽△CDP,
∴∠ABP=∠CDP,
∴∠ADO=∠CBO,
又∵∠OAD=∠OCB,
∴△OAD∽△OCB,
综上所述,图中的相似三角形有2对:△ABP∽△CDP,△OAD∽△OCB.
故答案是:2.
【考点精析】通过灵活运用相似三角形的判定,掌握相似三角形的判定方法:两角对应相等,两三角形相似(ASA);直角三角形被斜边上的高分成的两个直角三角形和原三角形相似; 两边对应成比例且夹角相等,两三角形相似(SAS);三边对应成比例,两三角形相似(SSS)即可以解答此题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网