题目内容
【题目】(题文)直角三角形有一个非常重要的性质质:直角三角形斜边上的中线等于斜边的一半,比如:如图1,Rt△ABC中,∠C=90°,D为斜边AB中点,则CD=AD=BD=-AB.请你利用该定理和以前学过的知识解决下列问题:
在△ABC中,直线绕顶点A旋转.
(1)如图2,若点P为BC边的中点,点B、P在直线的异侧,BM⊥直线于点M,CN⊥直线于点N,连接PM、PN.求证:PM=PN;
(2)如图3,若点B、P在直线的同侧,其它条件不变,此时PM=PN还成立吗?若成立,请给予证明;若不成立,请说明理由;
(3)如图4,∠BAC=90°,直线旋转到与BC垂直的位置,E为AB上一点且AE=AC,EN⊥于N,连接EC,取EC中点P,连接PM、PN,求证:PM⊥PN.
【答案】(1)证明见解析(2)PM=PN(3)证明见解析
【解析】
(1)如图2中,延长NP交BM的延长线于G.只要证明△PNC≌△PGB,推出PN=PG,再根据直角三角形斜边中线定理即可证明.
(2)结论:PM=PN.延长NP交BM于G,证明方法类似(1).
(3)如图4中,延长NP交BM于G.先证明△EAN≌△CAM,推出EN=AM,AN=CM,再证明△ENP≌△CGP,推出EN=CG=AM,PN=PG,因为AN=CM,所以MG=MN,即可证明PM⊥PN.
(1)证明:如图2中,延长NP交BM的延长线于G.
∵BM⊥AM,CN⊥AM,
∴BG∥CN,
∴∠PCN=∠PBG,
在△PNC和△PGB中, ,
∴△PNC≌△PGB,
∴PN=PG,
∵∠NMG=90°,
∴PM=PN=PG.
(2)解:结论:PM=PN.
如图3中,延长NP交BM于G.
∵BM⊥AM,CN⊥AM,
∴BM∥CN,
∴∠PCN=∠PBG,
在△PNC和△PGB中, ,
∴△PNC≌△PGB,
∴PN=PG,
∵∠NMG=90°,
∴PM=PN=PG.
(3)如图4中,延长NP交BM于G.
∵∠EAN+∠CAM=90°,∠CAM+∠ACM=90°,
∴∠EAN=∠ACM,
在△EAN和△CAM中,
∴△EAN≌△CAM,
∴EN=AM,AN=CM,
∵EN∥CG,
∴∠ENP=∠CGP,
在△ENP和△CGP中,
,
∴△ENP≌△CGP,
∴EN=CG=AM,PN=PG,
∵AN=CM,
∴MG=MN,
∴PM⊥PN.
【题目】如图,是若干个粗细均匀的铁环最大限度的拉伸组成的链条,已知铁环粗0.5厘米,每个铁环长4.6厘米,设铁环间处于最大限度的拉伸状态
(1)填表:
铁环个数 | 1 | 2 | 3 | 4 |
链条长(cm) | 4.6 | 8.2 | _____ | ____ |
(2)设n个铁环长为y厘米,请用含n的式子表示y;
(3)若要组成2.17米长的链条,至少需要多少个铁环?