题目内容
【题目】平行于x轴的直线分别与一次函数y=-x+3和二次函数y= x2 -2x-3的图象交于A(x1,y1),B(x2,y2),C(x3,y3)三点,且x1<x2<x3,设m= x1+x2+x3,则m的取值范围是____________.
【答案】m<0
【解析】
结合函数的图象,求出直线和抛物线的交点(-2,5)和(3,0),与这两个图形的交点坐标满足x1<x2<x3,根据根与系数关系可求得.
,
得:
, 或,
所以直线与抛物线的交点是(-2,5)和(3,0),二次函数的对称轴为x=1
因为A(x1,y1),B(x2,y2),C(x3,y3)三点,且x1<x2<x3
如图则l直线只能在直线l1上方,则x2+ x3=21=2
x1<-2,所以x1+x2+x3<0
即:m<0
故正确答案为:m<0
【题目】小明对某市出租汽车的计费问题进行研究,他搜集了一些资料,部分信息如下:
收费项目 | 收费标准 |
3公里以内收费 | 13元 |
基本单价 | 2.3元/公里 |
…… | …… |
备注:出租车计价段里程精确到500米;出租汽车收费结算以元为单位,元以下四舍五入。
小明首先简化模型,从简单情形开始研究:①只考虑白天正常行驶(无低速和等候);②行驶路程3公里以上时,计价器每500米计价1次,且每1公里中前500米计价1.2元,后500米计价1.1元.
下面是小明的探究过程,请补充完整:
记一次运营出租车行驶的里程数为(单位:公里),相应的实付车费为(单位:元).
(1)下表是y随x的变化情况
行驶里程数x | 0 | 0<x<3.5 | 3.5≤x<4 | 4≤x<4.5 | 4.5≤x<5 | 5≤x<5.5 | … |
实付车费y | 0 | 13 | 14 | 15 | … |
(2)在平面直角坐标系中,画出当时随变化的函数图象;
(3)一次运营行驶公里()的平均单价记为(单位:元/公里),其中.
①当和时,平均单价依次为,则的大小关系是____________;(用“<”连接)
②若一次运营行驶公里的平均单价不大于行驶任意()公里的平均单价,则称这次行驶的里程数为幸运里程数.请在上图中轴上表示出(不包括端点)之间的幸运里程数的取值范围.