题目内容
如图,正方形ABCD中,对角线AC,BD相交于点O,则图中的等腰三角形有
- A.4个
- B.6个
- C.8个
- D.10个
C
分析:先根据正方形的四边相等即对角线相等且互相平分的性质,可得AB=BC=CD=AD,AO=OD=OC=OB,再根据等腰三角形的定义即可得出图中的等腰三角形的个数.
解答:∵正方形ABCD中,对角线AC,BD相交于点O,
∴AB=BC=CD=AD,AO=OD=OC=OB,
∴△ABC,△BCD,△ADC,△ABD,△AOB,△BOC,△COD,△AOD都是等腰三角形,一共8个.
故选C.
点评:本题考查了正方形的性质:四边相等,对角线相等且互相平分.以及等腰三角形的概念:有两边相等的三角形叫做等腰三角形.
分析:先根据正方形的四边相等即对角线相等且互相平分的性质,可得AB=BC=CD=AD,AO=OD=OC=OB,再根据等腰三角形的定义即可得出图中的等腰三角形的个数.
解答:∵正方形ABCD中,对角线AC,BD相交于点O,
∴AB=BC=CD=AD,AO=OD=OC=OB,
∴△ABC,△BCD,△ADC,△ABD,△AOB,△BOC,△COD,△AOD都是等腰三角形,一共8个.
故选C.
点评:本题考查了正方形的性质:四边相等,对角线相等且互相平分.以及等腰三角形的概念:有两边相等的三角形叫做等腰三角形.
练习册系列答案
相关题目