题目内容
【题目】如图,AB∥CD,E 是直线 CD 上的一点,且 ∠BAE=30°, 是直线 CD 上的一动点,M是 AP 的中点,直线 MN⊥AP 且与 CD 交于点 N,设 ∠BAP=X°,∠MNE=Y°.
(1)在图2 中,当 x=12 时,∠MNE= ;在图 3 中,当 x=50 时,∠MNE= ;
(2)研究表明:y与x之间关系的图象如图4所示( 不存在时,用空心点表示),请你根据图象直接估计当 y=100 时,x= ;
(3)探究:当 x= 时,点 N 与点 E 重合;
(4)探究:当 x>105 时,求y与x之间的关系式.
【答案】(1)102°,40°;(2)10或170;(3)15或105.(4)y=270-x
【解析】(1)当x=12时,根据三角形外角的性质可:∠MNE=90°+12°=102°;
当x=50°,根据直角三角形两锐角互余可得结论;
(2)由图象直接得出结论;
(3)分两种情况:①P在E的左侧,②P在E的右侧,根据平行线的性质和中垂线的性质可得结论;
(4)如图7,根据三角形外角和为360°列式可得结论.
解:(1)如图2,∵AB∥CD,
∴∠BAP=∠APN=x°,
∵MN⊥AP,
∴∠PMN=90°,
∴∠MNE=∠PMN+∠APN=90°+x°,
当x=12时,∠MNE=(90+12)°=102°;
即y=102°,
如图3中,当x=50时,∠APN=50°,
∴y=∠MNE=90°-x°=90°-50°=40°,
故答案为:102°,40°;
(2)如图2,当0<x<30时,y=90+x,
此时,y=100时,90+x=100,x=10,
由图4可知:y=100时,还有x=170,
∴当y=100时,x=10或170,
故答案为:10或170;
(3)①P在E的左侧时,当N与E重合时,如图5,∠BAE=∠AEP=30°,
∵MN是AP的中垂线,
∴AE=PE,
∴∠AEM=∠PEM=15°,
∴∠EAP=90°-15°=75°,
∴∠BAP=x=30°+75°=105°,
②P在E的右侧时,当N与E重合时,如图6,
∵AB∥CD,
∴∠BAP=∠APE=x,
同理得:AE=PE,
∴∠EAM=∠EPM=x,
∵∠BAE=30°,
∴∠BAP=x=∠EAP=∠BAE=15°,
综上所述,当x=15或105时,点N与点E重合;
故答案为:15或105;
(4)当x>105时,如图7,
∵AB∥CD,
∴∠APC=∠BAP=x,
∵∠APC+∠MNE+∠AMN=360°,∠AMN=90°,
∴∠APC+∠MNE=360°-90°=270°,
∴∠MNE=270°-∠APC=270°-∠BAP,
即y=270-x.
【题目】下表记录了一名球员在罚球线上投篮的结果,
投篮次数(n) | 50 | 100 | 150 | 209 | 250 | 300 | 350 |
投中次数(m) | 28 | 60 | 78 | 104 | 123 | 152 | 175 |
投中频率(n/m) | 0.56 | 0.60 |
| 0.49 |
|
|
(1)计算并填写表中的投中频率(精确到0.01);
(2)这名球员投篮一次,投中的概率约是多少(精确到0.1)?