题目内容
【题目】如图,在四边形ABCD中,AB∥DC,AB=AD,对角线AC、BD相交于点O,AC平分∠BAD,过点C作CE⊥AB交AB的延长线于点E.若AB=,BD=2,则BE的长等于_____.
【答案】
【解析】
首先证明四边形ABCD是菱形,利用菱形的性质△AOB是直角三角形,利用勾股定理求出OA,利用面积法求出EC的长,即可解决问题,菱形的面积=对角线乘积的一半。
解:∵AB∥CD,
∴∠OAB=∠DCA,
∵AC为∠DAB的平分线,
∴∠OAB=∠DAC,
∴∠DCA=∠DAC,
∴CD=AD=AB,
∵AB∥CD,
∴四边形ABCD是平行四边形,
∵AD=AB,
∴四边形ABCD是菱形;
∴OA=OC,BD⊥AC,
∵CE⊥AB,
∵BD=2,
∴OB=BD=1,
在Rt△AOB中,AB=,OB=1,
∴OA= =2,
∴S△ACB=2S△AOB=2= ABCE,
∴CE=,
在Rt△BCE中,∵BC=AB=,EC=,
∴BE= =.
故答案为.
练习册系列答案
相关题目