题目内容
【题目】已知函数y1=2x-4与y2=-2x+8的图象,观察图象并回答问题:
(1)x取何值时,2x-4>0?
(2)x取何值时,-2x+8>0?
(3)x取何值时,2x-4>0与-2x+8>0同时成立?
(4)求函数y1=2x-4与y2=-2x+8的图象与x轴所围成的三角形的面积?
【答案】(1)x>2;(2)x<4 ;(3)2<x<4;(4)2(平方单位)
【解析】
利用图象可解决(1)、(2)、(3);利用图象写出两函数图象的交点坐标,然后根据三角形面积公式计算函数y1=2x-4与y2=-2x+8的图象与x轴所围成的三角形的面积.
由图可知:(1)当x>2时,2x4>0;
(2)当x<4时,-2x+8>0;
(3)由(1)(2)可知当2<x<4时,2x4>0与2x+8>0同时成立;
(4)联立y1=2x-4与y2=-2x+8,解得x=3,y=2,
∴函数y1=2x-4与y2=-2x+8的图象的交点坐标为(3,2),
所以函数y1=2x-4与y2=-2x+8的图象与x轴所围成的三角形的面积=×(42)×2=2(平方单位).
【题目】墨墨和茗茗两人在做抛掷硬币的实验,他们同时各自抛一枚硬币,出现的结果及部分数据如表:
事件 | 两个正面 | 一正一反 | 两个反面 |
频数 | ________ | ||
频率 | ________ | ________ |
填写表中空格;
他们各自抛了多少次硬币?
他们实验的结果可靠吗?说明理由.
【题目】某超市销售一种商品,成本每千克40元,规定每千克售价不低于成本,且不高于80元,经市场调查,每天的销售量y(千克)与每千克售价x(元)满足一次函数关系,部分数据如下表:
售价x(元/千克) | 50 | 60 | 70 |
销售量y(千克) | 100 | 80 | 60 |
(1)求y与x之间的函数表达式;
(2)设商品每天的总利润为W(元),则当售价x定为多少元时,厂商每天能获得最大利润?最大利润是多少?
(3)如果超市要获得每天不低于1350元的利润,且符合超市自己的规定,那么该商品每千克售价的取值范围是多少?请说明理由.