题目内容

如图,两个同心圆的半径分别为4cm和5cm,大圆的一条弦AB与小圆相切,则弦AB的长为(  )
A.3cmB.4cmC.6cmD.8cm
C.

试题分析:首先连接OC,AO,由切线的性质,可得OC⊥AB,由垂径定理可得AB=2AC,然后由勾股定理求得AC的长,继而可求得AB的长.
如图,连接OC,AO,

∵大圆的一条弦AB与小圆相切,
∴OC⊥AB,
∴AC=BC=AB,
∵OA=5cm,OC=4cm,
在Rt△AOC中,AC==3cm,
∴AB=2AC=6(cm).
故选C.
考点: 1.切线的性质;2.勾股定理;3.垂径定理.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网