题目内容

【题目】如图,在△ABC中,AD是BC边上的中线,E是AD的中点,过点A作BC的平行线交BE的延长线于点F,连接CF.

(1)求证:AF=DC;

(2)若AB⊥AC,试判断四边形ADCF的形状,并证明你的结论;

(3)在(2)的条件下,要使四边形ADCF为正方形,在△ABC中应添加什么条件,请直接把补充条件写在横线上 (不需说明理由).

【答案】(1)证明见解析 (2)答案见解析 (3)AB=AC

【解析】

(1)连接DF,证三角形AFE和三角形DBE全等,推出AF=BD,即可得出答案;
(2)根据平行四边形的判定得出平行四边形ADCF,求出AD=CD,根据菱形的判定得出即可;
(3)根据等腰三角形性质求出ADBC,推出∠ADC=90°,根据正方形的判定推出即可.

(1)证明:连接DF,


EAD的中点,
AE=DE,
AFBC,
∴∠AFE=DBE,
AFEDBE中,

∴△AFE≌△DBE(AAS),
EF=BE,
AE=DE,
∴四边形AFDB是平行四边形,
BD=AF,
AD为中线,
DC=BD,
AF=DC;
(2)四边形ADCF的形状是菱形,
证明:∵AF=DC,AFBC,
∴四边形ADCF是平行四边形,
ACAB,
∴∠CAB=90°,
AD为中线,
AD=DC,
∴平行四边形ADCF是菱形;
(3)解:AC=AB,
理由是:∵∠CAB=90°,AC=AB,AD为中线,
ADBC,
∴∠ADC=90°,
∵四边形ADCF是菱形,
∴四边形ADCF是正方形,
故答案为:AC=AB.

练习册系列答案
相关题目

【题目】数学是一门充满乐趣的学科,某校七年级小凯同学的数学学习小组遇到一个富有挑战性的探究问题,请你帮助他们完成整个探究过程;

(问题背景)

对于一个正整数,我们进行如下操作:

1)将拆分为两个正整数的和,并计算乘积

2)对于正整数,分别重复此操作,得到另外两个乘积;

3)重复上述过程,直至不能再拆分为止,(即拆分到正整数1);

4)将所有的乘积求和,并将所得的数值称为该正整数的神秘值,请探究不同的拆分方式是否影响正整数神秘值,并说明理由.

(尝试探究):

1)正整数2神秘值_________

2)为了研究一般的规律,小凯所在学习小组通过讨论,决定再选择两个具体的正整数67,重复上述过程

探究结论:

如图1所示,是小凯选择的一种拆分方式,通过该拆分方法得到正整数6神秘值15.

请模仿小凯的计算方式,在图2中,选择另外一种拆分方式,给出计算正整数6神秘值的过程;对于正整数7,请选择一种拆分方式,在图3中给出计算正整数7神秘值的过程.

(结论猜想)

结合上面的实践活动,进行更多的尝试后,小凯所在学习小组猜测,正整数神秘值与其拆分方法无关.请帮助小凯,利用尝试成果,猜想正整数神秘值的表达式为________.(用含字母的代数式表示,直接写出结果)

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网