题目内容
【题目】如图,已知⊙O是△ABC的外接圆,AB是⊙O的直径,D是AB延长线上一点,AE⊥DC交DC的延长线于点E,且AC平分∠EAB.
(1)求证:DE是⊙O的切线;
(2)若AB=6,AE=,求BD和BC的长.
【答案】(1)证明见解析;(2)BD=2;BC=.
【解析】试题分析:(1)要证DE是⊙O的切线,只要连接OC,再证∠DCO=90°即可.
(2)已知两边长,求其它边的长,可以证明三角形相似,由相似三角形对应边成比例来求.
试题解析:解:(1)连接OC.∵AE⊥DC,∴∠E=90°.∵AC平分∠EAB,∴∠EAC=∠BAC.
又∵OA=OC,∴∠ACO=∠BAC,∴∠EAC=∠ACO,∴OC∥AE,∴∠OCD=∠E=90°,∴DC是⊙O的切线.
(2)∵∠D=∠D,∠E=∠OCD=90°,∴△DCO∽△DEA,∴ ,∴,∴,∴BD=2.∵AB是⊙O的直径,∴∠ACB=90°,∴∠E=∠ACB=90°.∵∠EAC=∠BAC,∴Rt△EAC∽Rt△CAB,∴,∴,∴AC2=.由勾股定理得:BC===.
练习册系列答案
相关题目