题目内容

【题目】如图,在等腰Rt△ABC中,∠ABC=90°,AB=CB=2,点D为AC的中点,点E,F分别是线段AB,CB上的动点,且∠EDF=90°,若ED的长为m,则△BEF的周长是(用含m的代数式表示)

【答案】( m+2)
【解析】解:如图,

连接BD,在等腰Rt△ABC中,点D是AC的中点,

∴BD⊥AC,

∴BD=AD=CD,∠DBC=∠A=45°,∠ADB=90°,

∵∠EDF=90°,

∴∠ADE=∠BDF,

在△ADE和△BDF中,

∴△ADE≌△BDF(ASA),

∴AE=BF,DE=DF,

在Rt△DEF中,DF=DE=m.

∴EF= DE= m,

∴△BEF的周长为BE+BF+EF=BE+AE+EF=AB+EF=2+ m,

所以答案是:( m+2)

【考点精析】关于本题考查的等腰直角三角形,需要了解等腰直角三角形是两条直角边相等的直角三角形;等腰直角三角形的两个底角相等且等于45°才能得出正确答案.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网