题目内容
【题目】如图,在△ABC中,AB=AC,∠BAC=36°,
(1)作出AB边的垂直平分线DE,交AC于点D,交AB于点E,连接BD;
(2)下列结论正确的是:
① BD平分∠ABC;② AD=BD=BC;③ △BDC的周长等于AB+BC; ④ D点是AC中点;
【答案】(1)详见解析;(2)①②③.
【解析】
根据线段的垂直平分线的性质(线段垂直平分线上的点与线段两个端点的距离相等)求解即可求得答案,(1)利用线段垂直平分线的作法进而得出即可.
(2) 由在△ABC中,AB=AC,∠A=36°,根据等边对等角与三角形内角和定理,即可求得∠ABC与∠C的度数,又由AB的垂直平分线是DE,根据线段垂直平分线的性质,即可求得AD=BD,继而求得∠ABD的度数,则可知BD平分∠ABC,可得△BCD的周长等于AB+BC,又可求得∠BDC的度数,,求得AD=BD=BC,则可求得答案,注意排除法在解选择题中的应用.
(1)
(2) ∵在△ABC中,AB=AC,∠A=36°,
∴∠ABC=∠C=72°,
∵AB的垂直平分线是DE,
∴AD=BD,
∴∠ABD=∠A=36°,
∴∠DBC=∠ABC-∠ABD=72°-36°=36°=∠ABD,
∴BD平分∠ABC,故①正确,
∴△BCD的周长为:BC+CD+BD=BC+CD+AD=BC+AC=BC+AB,故③正确;
∵∠DBC=36°,∠C=72°,
∴∠BDC=180°-∠DBC-∠C=72°,
∴∠BDC=∠C,
∴BD=BC,
∴AD=BD=BC,故②正确;
∵BD>CD,
∴AD>CD,
∴点D不是线段AC的中点,故④错误,
故答案为: ①②③.
【题目】为了了解“通话时长”(“通话时长”指每次通话时间)的分布情况,小强收集了他家1000个“通话时长”数据,这些数据均不超过18(分钟).他从中随机抽取了若干个数据作为样本,统计结果如下表,并绘制了不完整的频数分布直方图.
“通话时长” | 0<x≤3 | 3<x≤6 | 6<x≤9 | 9<x≤12 | 12<x≤15 | 15<x≤18 |
次数 | 36 | a | 8 | 12 | 8 | 12 |
根据表、图提供的信息,解答下面的问题:
(1)a= , 样本容量是;
(2)求样本中“通话时长”不超过9分钟的频率:;
(3)请估计小强家这1000次通话中“通话时长”超过15分钟的次数.
【题目】某校课外兴趣小组在本校学生中开展“感动中国2013年度人物”先进事迹知晓情况专题调查活动,采取随机抽样的方式进行问卷调查,问卷调查的结果分为A、B、C、D四类.其中,A类表示“非常了解”,B类表示“比较了解”,C类表示“基本了解”,D类表示“不太了解”,划分类别后的数据整理如下表:
类别 | A | B | C | D |
频数 | 30 | 40 | 24 | b |
频率 | a | 0.4 | 0.24 | 0.06 |
(1)表中的a= , b=;
(2)根据表中数据,求扇形统计图中类别为B的学生数所对应的扇形圆心角的度数;
(3)若该校有学生1000名,根据调查结果估计该校学生中类别为C的人数约为多少?
【题目】甲、乙两人在5次打靶测试中命中的环数如下: 甲:8,8,7,8,9
乙:5,9,7,10,9
(1)填写下表:
平均数 | 众数 | 中位数 | 方差 | |
甲 | 8 | 8 | 0.4 | |
乙 | 9 | 3.2 |
(2)教练根据这5次成绩,选择甲参加射击比赛,教练的理由是什么?
(3)如果乙再射击1次,命中8环,那么乙的射击成绩的方差 . (填“变大”、“变小”或“不变”).