题目内容
【题目】如图,在△ABC中,∠ACB=90°,AC=BC,延长AB至点D,使DB=AB,连接CD,以CD为直角边作等腰直角三角形CDE,其中∠DCE=90°,连接BE.
(1)求证:△ACD≌△BCE;
(2) 若AC=3cm,求BE的长度.
【答案】(1)详见解析;(2).
【解析】试题分析:(1)根据等腰直角三角形的性质得到然后利用“SAS”可判断≌即可;
(2)根据全等三角形的性质得到即可;
试题解析:(1)证明:∵△CDE是等腰直角三角形,
∴CD=CE,
∴∠ACB=∠DCE,
∴∠ACB+∠BCD=∠DCE+∠BCD,
∴∠ACD=∠BCE,
在△ACD和△BCE中,
∴△ACD≌△BCE(SAS);
(2)
由勾股定理得:
又
∵≌
练习册系列答案
相关题目
【题目】尺规作三角形的类型:
尺 规 作 图 | 类型 | 依据 |
已知两边及其夹角作三角形 | __________ | |
已知两角一边作三角形 | __________(或) | |
已知三边作三角形 | __________ |
【答案】 SAS ASA SSS
【解析】试题解析:已知两边及其夹角作三角形,其依据是:SAS.
已知两角一边作三角形,其依据是:ASA(或).
已知三边作三角形, 其依据是:
故答案为:
点睛:判定三角形全等的方法有:
【题型】填空题
【结束】
11
【题目】如图,根据图中作图痕迹,可以得出作三角形的依据分别是:
(1)__________;
(2)___________;
(3)__________.(图中虚线表示最后作出的线段)