题目内容
【题目】小明家的门框上装有一把防盗门锁(如图1).其平面结构图如图2所示,锁身可以看成由两条等弧AD,弧BC和矩形ABCD组成,弧BC的圆心是倒锁按钮点M.已知弧AD的弓形高GH=2cm,AD=8cm,EP=11cm.当锁柄PN绕着点N旋转至NQ位置时,门锁打开,此时直线PQ与弧BC所在的圆相切,且PQ∥DN,tan∠NQP=2.
(1)弧BC所在圆的半径为_____cm.
(2)线段AB的长度约为_____cm.(≈2.236,结果精确到0.1cm)
【答案】5 29.8
【解析】
(1)如图,连接BM,设HM交BC于K,延长PQ交NM的延长线于点T,若直线PQ与弧BC所在的圆相切于J,连结MJ,在Rt△BMK中利用勾股定理进一步求解可;
(2)根据题意可进一步得出tan∠DNE=tan∠NQP=2=,从而得出NP的长,最后再利用tan∠TMJ=tan∠NPT进一步求解,通过GN+MN+MK求出AB的长即可.
如图,连接BM,设HM交BC于K,延长PQ交NM的延长线于点T,若直线PQ与弧BC所在的圆相切于J,连结MJ,
设BM=r,在Rt△BMK中,则有r2=42+(r﹣2)2,
解得r=5,
∴BM=5,即弧BC所在圆的半径为5cm.
(2)∵DN∥PB,
∴∠DNE=∠P,
∵NP=NQ,
∴∠P=∠NQP,
∴∠DNE=∠NQP,
∴tan∠DNE=tan∠NQP=2=,
∵NE=DG=4,
∴DE=NG=8,
∴NP=NE+EP=4+11=15,
∵直线PQ与弧BC所在的圆相切于J,
∴MJ⊥PQ,MJ=5,
∴∠TMJ=∠NPT,
∴tan∠TMJ=tan∠NPT=2,
∴,
∴NT=15×2=30,TJ=5×2=10,
∴MT=,
∴MN=NT﹣MT=30﹣5,
∴AB=GN+MN+MK=8+30﹣5+3=41﹣5≈29.8cm
故答案为:(1)5,(2)29.8.